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What is Colloid Propulsion? 
Ions  
Å Direct charging from the liquid 

phase of ions or droplets 
Neutralization  
Å Negative and positive propellant 

species can be generated from the 
same source 

Why is it useful (advantages)? 
Å Liquid propellant=> Simple(-r) 

propellant handling 
Å Ionization efficiency is not scale 

dependent=> i) low thrust (eg 
CubeSats/LISA); ii) Scalable thrust  

Å Bipolar operation uses all propellant 
propulsively => high efficiency 

Schematic typical of most electrostatic electric 
propulsion systems  
Å A source of ions 
Å An electric field 
Å A method of ensuring plasma neutrality 

Colloid and FEEPS?  
Å Both based on electro-hydrodynamic atomization but FEEPS requires additional neutralization 
ŎƻƳǇƻƴŜƴǘ όƻƴƭȅ ǇƻǎƛǘƛǾŜ ƛƻƴǎύŀƴŘ ƘŜŀǘƛƴƎ ƻŦ ǘƘŜ άƭƛǉǳƛŘέ ƳŜǘŀƭ ǇǊƻǇŜƭƭŀƴǘ ҐҔ C9tt{ Ƙŀǎ ƭƻǿŜǊ 
efficiency 
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Propulsion systems: key parameters: 
Thruster 
1. Thrust: Ὕ άȢὠ 

 

2. Specific Impulse: Ὅ  

 
Mission 

1. Total Impulse: ὍάὴόὰίὩ᷿ άὠὨὸ 

2. Delta V:    ɝὠ ὠȢὰὲ  

System parameters 
Mo    Spacecraft mass 
g       Surface gravity acceleration 
Ve     Exhaust velocity 
ά     Propellant mass flow rate 
Me      Mass after fuel burn 
Tb         Propulsion system burn time 
 
Electric propulsion parameters 
q       Charge on ionized species 
m      Mass of charged species 
U       Effective accelerating potential 
 
 

For Electrostatic propulsion: 
Exhaust velocity is found from balance of potential energy of the charge species 

and kinetic energy after acceleration ->  ὠ
Ȣ

   

ü Ὅ ᶿ  
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Pantano et al J. Aerosol Sci. 25,1065 (1994) 

{ǘŀōƭŜ 9ƭŜŎǘǊƻǎǇǊŀȅΥ ά/ƻƴŜ-WŜǘ ƳƻŘŜ ƻǇŜǊŀǘƛƻƴέ 

Electrospray physics: 
The Ionization source 

 Electrospray can generate either ions or ions and charged droplets or just charged droplets  hence: 
ü Colloid propulsion 
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Å Analysis and modelling  of electrospray process generally based on the  Taylor-
Melcher leaky dielectric model * although frequent adoption of simplification 
such as perfect conductivity in fluid. 

Continuous electrospray: the stable Cone-Jet 
The transition region 
wherein charge equilibrium 
may not  be assumed and 
electrostatic shear 
accelerates fluid 

Fluid in-flow 

from some 

suitable source 

ï eg a 

capillary 

High Voltage 

Extraction - 

Acceleration 

Fluid Stress due to 
interaction 
between surface 
charge and electric 
field 

 
* Saville D. A., Electrohydrodynamics: the Taylor-Melcher leaky dielectric model. Annu. Rev. Fluid Mech., 1997, 29, 27ς64  

Charged Spray 
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Jets and Charged Jets: a historical perspective 
First published work on charged jets was by Abbe Nollet ƛƴ мтпфΥ ōǊŜŀƪǳǇ ŀǘ ά/έ ƭŜŀŘǎ 
to tiny sub-jets 

Lenard P 1887 Ann. Phys. Chem. 30 209 

Nollet A 1749 Recherches Sur les Causes 
Particuli`eres des 
PheȰnome`nes EȰlectriques (Paris: les Fre`res 
Guerin) 

Jets are always unstable;  
First detailed work by Plateau and Lord 
Rayleigh who identified the breakup is 
driven by the growth rate of the fastest 
growing instability ς frequently called 
the Rayleigh-Plateau Instability 
Image: Here the fastest growing 
instability is the axisymmetric Varicose 
instability: Rayleigh 1891 Nature 44 
249ς54 
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Zeleny Physical Review 1914, 1917 

Early systematic study of electrified jets/ electrospray was by Zeleny 1915, 1917  

Figure 3 above captures the main modes of electrospray without the advantages of modern 
high speed, high resolution imaging systems! 
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Evolution during spindle mode 

All images curtesy  H Xia 
PhD thesis QMUL 2018 

Cone jet            Multi-jet                Whipping jet 
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Dripping mode 

Pulsation 

Cone-jet 

Multi -jet 

Scaling Laws:  
The relationship between spray current I and flow rate Q : this depends on the mode 

Recent result showing influence of voltage on all modes of 
electrospray1 

1Ryan et al Appl Phys Letts 104, 084101 (2014) 

Colloid Thrusters: 
Å Stable operation requires Cone-jet 

mode 
Å Accepted scaling law is that 

associated with Fernandez de la 
Mora2: 

Ὅθ ὗ  
Hence: 

Ὅ ᶿ
ή

ά
ᶿ
ρ

ὗ
 

ü Low flow rates for high 
performance 

ü System typically has low thrust 

2Fernandez de la Mora & Loscertales J.Fluid 
Mech. (1994) 260, 155-184 

Example calculation:  

For ion emission flow rate ~0.1nL/s 

Assume fluid has density of water; Isp~ 1000s 

Ý Thrust ~ 1µN 

Ý Large number of individual emitters required 
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Scaling Laws(cont) 
  
The scaling laws also identify an approximate value for the minimum stable flow rate 
for a fluid of density ”  having a conductivity „ surface tension  and permittivity ‐  
for an electrospray system 

ὗ
‐

”„
 

ü  For high performance a high conductivity liquid is required 
 
Å 5ƛǎŎƻǾŜǊŜŘ ǘƘŀǘ ǿƛǘƘ ŜȄǘǊŜƳŜƭȅ ƘƛƎƘ ŎƻƴŘǳŎǘƛǾƛǘȅ ƭƛǉǳƛŘǎ ǘƘŜ ǊŜǎǳƭǘƛƴƎ άǎǇǊŀȅέ Ŏŀƴ 

contain substantial fraction of pure (molecular) ions ς> high iconicity 
Å Suitable liquids identified as Ionic Liquids as they combine high conductivity and 

very low vapour pressure (no evaporation in space). A typical liquid EMI BF4 

For EMI BF4 Qmin~20pL/s 

Isp~ 1000s 

Ý Thrust ~ 0.2µN 
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Example behaviour*: EMI BF4 average flow rate vs spray current in vacuum 
Note: Flow rate controlled by voltage alone 

*Stark et al 387th Heraeus Seminar  Statics and Dynamics of Electrified Liquids: Droplets, Cones and 

Jets    2007 

Ion emitting regime: 
significantly higher emission 
current than expected from 
scaling law 
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 +TOF MS: 300 MCA scans from Sample 5 (1500) of emi_formamide_230207.wiff
a=3.56934174537638680e-004, t0=-4.30415829155681420e+001

Max. 905.0 counts.
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Charged Droplets 

 +TOF MS: 300 MCA scans from Sample 13 (1500) of emi_080107.wiff
a=3.56934174537638680e-004, t0=-4.30415829155681420e+001

Max. 1085.0 counts.
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Droplet spectrum: <m/z> ~ 8000 

Single ion at m/z = 111.18 

Colloid Thruster Implications 
ÅThe average specific charge is 

dependent upon the operating 
conditions, such as voltage and any 
upstream pressure 

Å Specific charge is dominated by the 
need to maintain a stable flow at very 
low flow rate 

Å This requires a system with high 
hydraulic impedance 
 

Options: 
1. An externally wetted needle  or  a 

porous needle 
2. Internal capillary flow with high 

impedance such as achieved with 
high aspect ratio (length/diameter) 
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Colloid system realizations  
Option 1: Externally wetted/shaped porous needle 
 
Å This development has been led by MIT who work with Busek Ltd and have spin 

out company Accion Systems Ltd  
 

Å Basic concept: porous emitter structure 
 
Å Pore size gradient -> capillarity self wetting 

 
Å Structure of emitter shape critical 

 
Å Produce very high iconicity 

 
Å Single electrode structure to achieve Isp                          
                                                                                       

Krejci et al J. Spacecraft & Rockets 2017 
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Porous needle array 

Extractor grid: voltage 
will  control extraction 
conditions and Isp 

Option 1: Externally wetted/shaped porous needle (cont) 

Krejci et al J. Spacecraft & Rockets 2017 
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Option 1: Externally wetted/shaped porous needle (cont.) 
 
                                                                                          Busek design for 100µN 

 

Formation of needle tip shape is 
critical to operation: the tip can 
have pores at different angles -> 
beam divergence 

Porous needle with pore size 
gradient to use capillarity to 
feed the needle 

In this design a dual grid is 
used: higher flow 
rate/lower specific charge 
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Colloid system realizations 
Option 2: Internally wetted capillary system 
 
Å Approach has been led by QMUL group 
Å Capillary flow leads to higher flow rate and lower specific charge than in the porous 

systems 
ü Require dual electrode system to achieve Isp 
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Internally wetted capillary system (cont) 
 
Å In this realization the emitters are 

manufactured in silicon using deep reactive ion 
etching techniques 

Å Major challenge achieving the high hydraulic 
impedance simply through the capillary aspect 
ratio 

Ryan et al IEPC 2013 ς 127 (2013) 

Images from research carried out under FP7 
Programme 


