HYPHEN: A multi-thruster simulation platform

A. Domínguez, D. Pérez-Grande, A. Sánchez-Villar, B. Tian, J. Zhou, P. Fajardo, M. Merino, E. Ahedo

Plasmas and Space Propulsion Team
Universidad Carlos III de Madrid, Spain

EPIC Workshop London, October 15-17, 2018

Plasmas and Space Propulsion Team (EP2)

- > ~20 year R&D experience
 - Modeling
 - Code development
 - > Testing (since 2016)
- ~15 Researchers
- ~ 40 R&D projects
 - > FP7 and H2020
 - > ESA, US-AFOSR
 - National R&D Plans
- ~60+120 papers, 1 patent
- Large background in teaching EP physics
- Large experience in international & industrial collaborations

- Modeling and simulation
 - Hall-effect thrusters
 - Electrodeless thrusters (HPT, ECRT)
 - Propulsive magnetic nozzles
 - Hollow cathodes, AF-MPDT (incipient)
 - Plasma plume characterization (unmagnetized & magnetized)
 - Contactless Debris Removal & Plume-Spacecraft interaction
 - Electrodynamic Tethers
 - Plasma-surface interaction
 - Plasma instabilities and turbulence
- ☐ Plasma diagnosis (theory & design)
- ☐ Thruster design, development, testing

EP2 vacuum facility

HYPHEN: A multi-thruster simulator

- Project to be developed along 2019
- Multi-thruster simulation platform for electromagnetic thrusters (EMT) operating with rarefied (i.e. weakly-collisional) plasmas
 - □ EMT with electrodes: HET, HEMPT, AF-MPDT
 - □ EMT with EM emission: HPT, ECRT, VASIMR
- > From converging ongoing EP2 developments for individual thrusters:
 - □ NOMADS within H2020-CHEOPS
 - □ SURFET within H2020-MINOTOR
 - □ HELPIC within AirbusDS (F) funded project
- > Improves thruster physics understanding, optimize code development
- Axisymmetric (2D), hybrid (PIC-MC/fluid), modular, OMP-parallelized
- HYPHEN will share structure and algorithms with EP2PLUS (3D hybrid code, focused on plumes)
 - EP2PLUS presentation on Wednesday 17 at 5:30 PM
- > HYPHEN will include our Magnetic Nozzle Physics models
 - Magnetic Nozzles presentation on Wednesday 17 at 2:00 PM

Code modular structure

- > Ion-module
 - □ <u>PIC-MC</u>, multi-species
- > Electron-module
 - □ Highly-magnetized, weakly-collisional <u>fluid</u>
 - Will include pressure anisotropy & magnetic mirror effects
 - Needs turbulent transport models!
 - Auxiliary full-PIC code will provide 'kinetic' information
- ➤ Wave-module (only for electrodeless HPT, ECRT,...)
 - \square Maxwell eqs + dielectric tensor \rightarrow strong coupling with E-module
 - □ Provides heating and other wave effects to E-module
- > Sheath-module
 - □ By default plasma is quasineutral (but Poisson solver can be added)
 - Admits different wall types (dielectric, metallic, emissive,...)
- Circuit-module
 - Essential in HPT, ECRT for overall performance calculation
 - □ Simplifies numerical convergence when different wall-types are present

Ion Module

- Operates on a structured mesh (ad-hoc PIC mesh generator)
- Possibility of including inner active surfaces (conducting or dielectric walls)
- > 3D Cartesian particle mover: provides accuracy symmetry axis
- Improved PIC statistics:
 - **□** Independent multiple populations
 - □ Generation weight-based **population control**
 - **□** Cylindrical corrections

Electron Module

Continuity & Momentum Eqs.

$$\nabla \cdot (\mathbf{j}_e + \mathbf{j}_i) = I_d$$

$$\mathbf{j_e} = \mathcal{K}_{\sigma} \cdot \left(-\nabla \phi + \frac{1}{en_e} \nabla p_e - \sum_{Z} \eta_{i_Z} \mathbf{j}_{i_Z} \right)$$

$$\mathcal{K}_{\sigma} = \left[egin{array}{ccc} \sigma_{ op} & -\sigma_{H} & 0 \ \sigma_{H} & \sigma_{ op} & 0 \ 0 & 0 & \sigma_{\parallel} \end{array}
ight] \quad \sigma_{\parallel} = rac{e^{2}n}{m_{e}v_{e}} \; \sigma_{H} = \chi_{e}\sigma_{ op} \ \sigma_{T} = rac{\sigma_{\parallel}}{1+\chi_{e}^{2}} \; \chi_{e} = rac{\omega_{ce}}{v_{e}} \ \sigma_{T} = rac{\sigma_{\parallel}}{v_{e}} \; \chi_{e} = rac{\omega_{ce}}{v_{e}} \; \chi_{e} = \frac{\omega_{ce}}{v_{e}} \; \chi_{e} = \frac{\omega_{ce}$$

Internal Energy & Heat Flux Eqs.

$$rac{\partial rac{3}{2}p_e}{\partial t} -
abla \cdot \left(rac{3}{2}p_erac{\mathbf{j}_e}{en_e}
ight) - p_e
abla \cdot \left(rac{\mathbf{j}_e}{en_e}
ight) +
abla \cdot \mathbf{q}_e = 0$$

$$E_{coll} + rac{\mathbf{j_e}}{en_e} \cdot \left(\mathbf{M'} - rac{\mathbf{j_e}}{2en_e} m_e S_e
ight) + Q_a$$

$$rac{5}{2}p_e
abla\left(rac{p_e}{m_en_e}
ight)+\omega_{ce}\left(\mathbf{q}_e\wedge\mathbf{l}_\parallel
ight)=\mathbf{H}_{coll}-rac{5}{2}rac{p_e}{m_en_e}\mathbf{M}'$$

- Finite volume method on Magnetic Field Aligned Mesh
- Limits impact of numerical diffusion.
- Very irregular cells, specially at boundaries and null points
- Accuracy issues

Wave Module

- ➤ Wave-plasma interaction module for HPTs, ECRTs provides
 - wavefields,
 - power deposition maps
 - plasma impedance
- \triangleright Maxwell eqs. + dielectric tensor in the ω -domain

回。0.01

0.005

0.06

- □ HPT: Finite Differences
- □ ECRT (MINOTOR): Finite Elements
- Severe numerical difficulties
 - Numerical dispersion
 - Resonances
 - Short wavelengths
- Perfectly matched layers for radiation to free space

2D wavefields and absorbed power maps in a HPT under two operating conditions

0.14

0.06

0.08

0.1

z [m]

0.12

0.06

0.12

z [m]

0.12

z [m]

0.14

PML

Perfect

conductor

 \boldsymbol{j}_a

Magnetoplasma options:

Cold + collisions

Kinetic damping

 \boldsymbol{B}_0

Auxiliary full-PIC code for EVDF

1Dradial full-PIC code for HET

- Study of electron VDFs with strong wall SEE
- ➤ T-anisotropy → magnetic mirror effects
- Primary and secondary electrons behave differently
- SEE is partially thermalized, partially recollected
- Cylindrical effects are significant
- Information on macroscopic magnitudes and eqs.
 - □ Correction to Boltzmann-Maxwell equilibrium
 - Up to 30% in our simulations
 - Correction factors to energy fluxes to the wall
 - Ways to include SEE in single-fluid equations

EVDFs at outer wall sheath edge

magnetic mirror

$$e\phi - e\phi_M - T_{rpM} \ln \frac{n_p}{n_{pM}} = \left[T_{rp} - T_{rpM} + \int_{r_M}^r dr \left(T_{rp} - T_{rpM} \right) \frac{d \ln n_p}{dr} \right] + \int_{r_M}^r dr \frac{T_{rp} - T_{\perp p}}{r} - \int_{r_M}^r dr \frac{m_e u_{\theta p}^2}{r}$$

$$\text{Boltzmann relation terms} \qquad \text{Non-uniform radial temperature} \qquad \text{T-anisotropy+} \qquad \text{Centrifugal force}$$

Results for CHEOPS

Base SPT-100 configuration

PPU control	$ m V_d$	$\dot{\mathbf{m}}$ (Xe)	PIC Δt	NOMADS Δt
Constant voltage	300V	$5\frac{mg}{s}$	$10^{-8}s$	$10^{-10}s$

No. PIC mesh elements	1080
Avg. No. macroparticles	$\sim 10^5$ Neutrals,
	$\sim 9 \times 10^4$ Single Ions,
	$\sim 9 \times 10^4$ Double Ions
No. MFAM elements	1326
No. cores	20
Computation time	$7.17 \times 10^4 s (\sim 20h)$:
	$4.6 \times 10^3 s$ in PIC,
	$6.6 \times 10^4 s$ in NOMADS

Singular SPT-100 configuration

PPU control	$ m V_d$	$\dot{\mathbf{m}}$ (Xe)	PIC Δt	NOMADS Δt
Constant voltage	300V	$5\frac{mg}{s}$	$10^{-8}s$	$10^{-10}s$

No. PIC mesh elements	1080
Avg. No. macroparticles	$\sim 10^5$ Neutrals,
	$\sim 7 \times 10^4$ Single Ions,
	$\sim 7 \times 10^4$ Double Ions
No. MFAM elements	2453
No. cores	20
Computation time	$18.8 \times 10^4 s (\sim 50h)$:
	$4.0 \times 10^3 s$ in PIC,
	$18.4 \times 10^4 s$ in NOMADS

Results for HPT

- Partial results without Wave module
- ightharpoonup Simulation here for $T_e \propto n_e^{\gamma-1}$
- In progress: simulation with prescribed map of energy deposition
- Adaptation to ECRT (MINOTOR) in progress

Benchmarking 2Dcyl and 3D codes

- > Excellent agreement between 2Dcyl NOMADS and 3D EP2PLUS
 - □ Electron module reduced to polytropic electron closure
 - □ 6 heavy species treated separately
 - Weighting more complex in 2D

Total N. parts. 2D	l
Total N. parts. 3D	143M

- Comparable noise level: typical ten-times computational cost gain in 2D
- CEX ions: generated in near plume, accelerated sidewards of plume core
 - □ Characterization of their density & energy (for S/C sputtering, ...)

Thank you! Questions?

email: ep2@uc3m.es

web: ep2.uc3m.es

twitter: @ep2lab

Code structure

3 INDEPENDENT UNITS:

- SET: Pre-processing tasks (Python/Matlab)
- CORE: Main simulation tasks (Fortran)
- POST: Post-processing tasks (Python/Matlab)
- HDF5 for I/O data management

- Open-MP parallelization
- Test Driven Design (TDD) development philosophy
- Version control through a Mercurial online repository

Benchmarking 2D and 3D codes

Ions injection: Generalized Parks-Katz SSM profiles (Parks & Katz, 1979, Merino et al 2015)

$$R_0 = 14 \text{ cm}, \ \gamma = 1.2$$

➤ NASA's NSTAR GIT plume simulation (Brophy 2002):

- □ 3D simulation domain: 2m side cubic
- □ 2D simulation domain: cylinder 1m radius 2m long
- \Box Circular injection area with radius R = 14 cm

N. cells 3D	-	$4 \cdot 10^{6}$
N. cells 2D	-	$1 \cdot 10^4$
$\Delta x = \Delta y \equiv \Delta r, \Delta z$	cm	1, 2
Δt , N. steps, Sim. time	s, N/A, ms	$3 \cdot 10^{-7}, 5 \cdot 10^4, 15$
T_{e0}, γ	eV, -	3.5, 1.2

Population	Type	Origin
i1s	Xe ⁺ Slow	Ionization and CEX $0 \rightarrow 1$ collisions
i1f	Xe ⁺ Fast	Injected SSM: $\alpha_0 = 20.5 \text{ deg}, T = 0.1 \text{ eV}$
i2s	Xe ⁺⁺ Slow	Ionization $0 \to 2$ and $1 \to 2$ and CEX $0 \to 2$ collisions
i2f	Xe ⁺⁺ Fast	Injected SSM: $\alpha_0 = 30 \text{ deg}, T = 0.2 \text{ eV}$
ns	Xe Slow	Injected flat profile: sonic conditions at $T=0.05 \text{ eV}$
nf	Xe Fast	CEX $0 \to 1$ and $0 \to 2$ collisions

