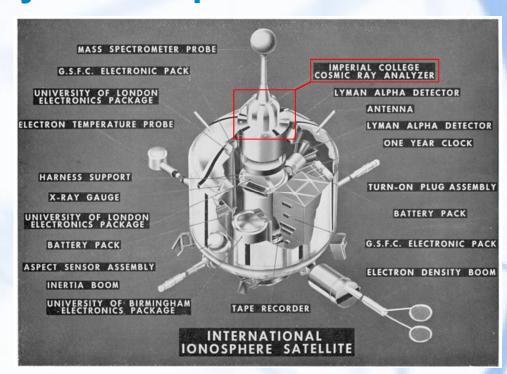


Imperial Plasma Propulsion Lab


Research Overview

Aaron Knoll, on behalf of the plasma propulsion group

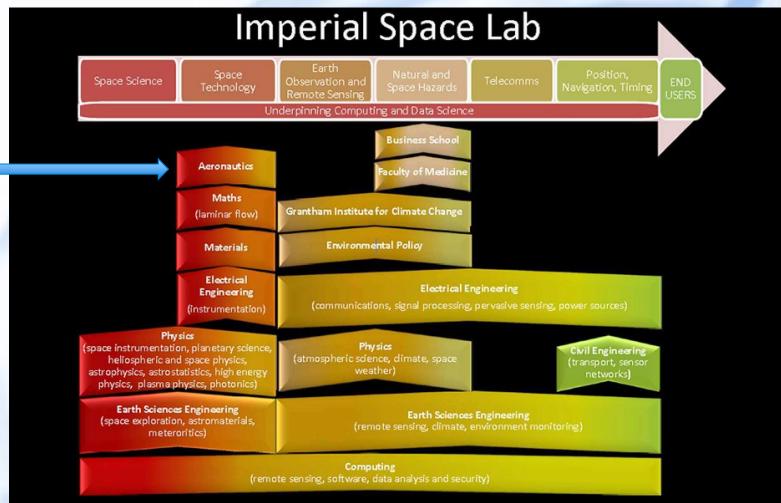
Imperial College – 55 years in space

Ariel 1, launch 26 April 1962

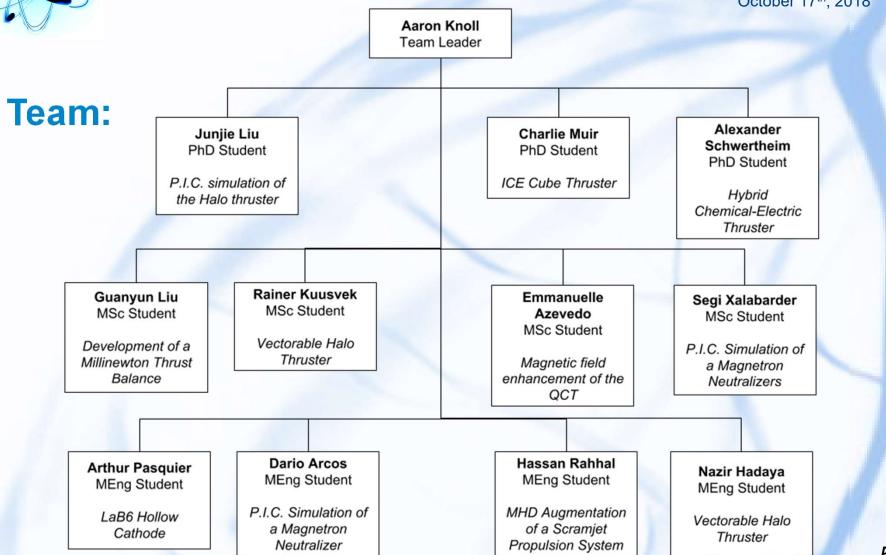
Baumann, Proc. Roy. Soc. A., 1964

Imperial Plasma Propulsion Lab

October 17th, 2018


Space Lab - introduction

- Launched 2013 director Prof. Steve Schwartz
- Imperial College Network of Excellence
- Brings together over 80 academics from across Imperial College with interests in:
 - Space-related technologies
 - Doing science from space
 - Using space-derived data products
 - Societal impacts and risks of space
 - Applications of space-developed expertise
- Internal collaborations, interactions with industry, public events, outreach
- Since January 2018, director is Prof. Tim Horbury



Plasma Propulsion Lab

Imperial Plasma Propulsion Lab

October 17th, 2018

New Vacuum Test Facility

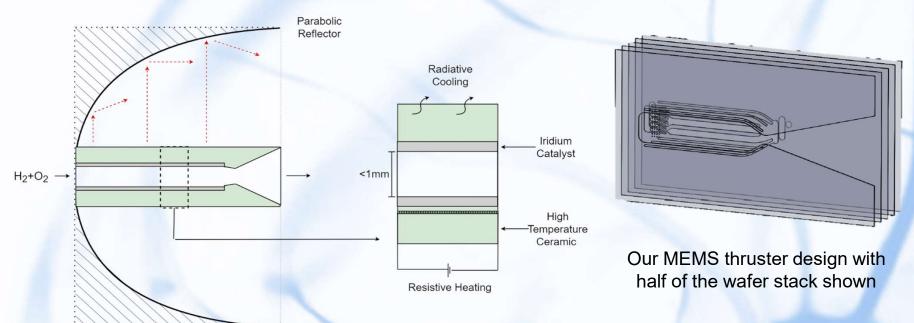
- Provider: Cutting Edge Coatings,
 Germany
- Dimensions:
 - 1.5m diameter x 2m main chamber
 - 0.75m diameter x 1.5m load lock
- Pumps:
 - Leybold cryopanel: 15,000 L/s Xe
 - 2 x Leybold turbopumps (2 x 2200 L/s)
- Performance: Operating pressure better that 2 x 10⁻⁵ Torr with gas for up to 1.5 mg/s Xenon

October 17th, 2018

Research Activities

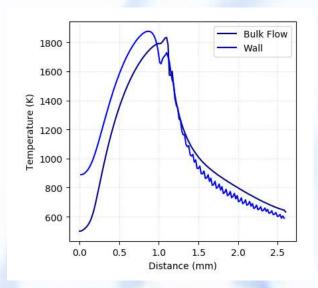
Technology	Target Performance	Commercial Need	Key Innovations
Vectorable Cross-Field (VeX) Thruster	Input power: 300W total		Thrust vectoring capability
	Propellant: Xenon	Beam steerable EP alternative to Hall	Centrally mounted hollow cathode
	Net specific impulse: 1800 s	Effect Thrusters, aimed at the needs of next generation small	
	• Thrust: 17 mN	geostationary platforms (< 5000 kg)	
	Net thrust efficiency: 50%		
	Power/thrust: 17.6 W/mN		
IZUUW Uuad Continement	' '	Next generation of the Airbus/SSTL	• Improved thrust efficiency versus QCT-200
	Propellant: Xenon Net specific impulse: 1600s	QCT device currently flying on NovaSAR. Beam steerable EP alternative for the growing small satellite industry and 'mega- constellations' (50kg - 200kg platform)	Non-divergent beam profile
	Thrust: 7.6mN Net thrust efficiency: 30%		

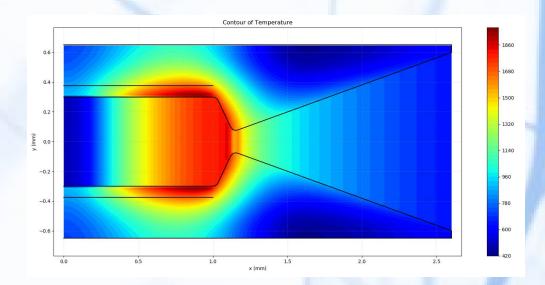
October 17th, 2018


Research Activities

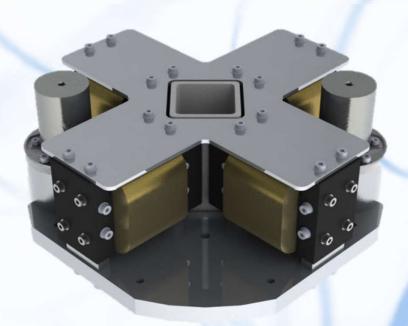
Technology	Target Performance	Commercial Need	Key Innovations
RF initiated hollow cathode + power electronics	Input power: 20W running,40W during start	Thermionic cathode that operates at	Heaterless hollow cathode
	Output current: 4A	low power and high efficiency, which uses a RF discharge during the start-	 Graceful low power start-up profile
	• Gas flow rate: 0.1 mg/s	up phase to rapidly warm the insert to its operating temerature (long-life	
	• mA/W: 200	and simple design/construction)	
Hybrid Chemical Electric Thruster	• EP Mode: 1800 s Isp, 85 mN		In-orbit fuel production via
	thrust	A single propulsion subsystem	electrolysis
	• CP Mode: 350 s Isp, 22 N thrust	(common propellant supply chain, PPU and thruster head) able to handle	 Combined function high thrust CP and high specific impulse EP
	Propellant: Water	both CP and EP phases of a mission	
ICE Cube Thruster	• Input power: < 10W	Thermionic cathode that operates at	Heaterless hollow cathode
	• New specific impulse: > 300s	low power and high efficiency, which uses a RF discharge during the start-	Graceful low power start-up profile
	Thrust: 1.6mN	up phase to rapidly warm the insert to	
	Propellant: Water	its operating temerature (long-life	

ICE Cube Thruster: Thruster concept


An experimental concept realization of a high specific impulse, low thrust chemical bipropellant micro-thruster system featuring electrolysis propellant capture and catalytic combustion.



ICE Cube Thruster: System Definition & Modelling


Initial results show that a desirable chemical decomposition can be achieved across the catalyst through purely surface reactions without exceeding the thermal constraints of iridium.

Quad Confinement Thruster

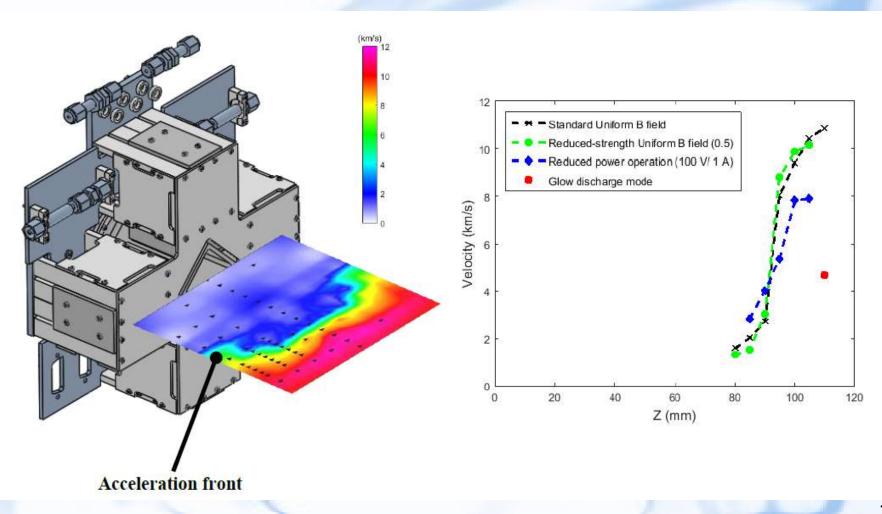
- Conceived in Autumn 2009
- DC powered cusped field thruster
- Magnetic topology based on plasma confinement proposed by loffe et al. (1981)
- Plasma confinement using four magnetic cusps
- Four independently controlled electromagnetics

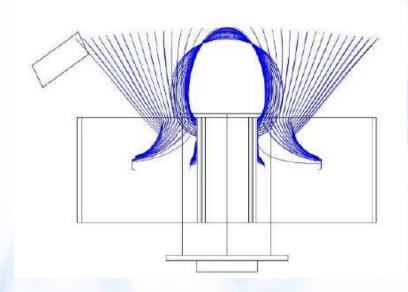
QCT in orbit demonstration on NovaSAR:

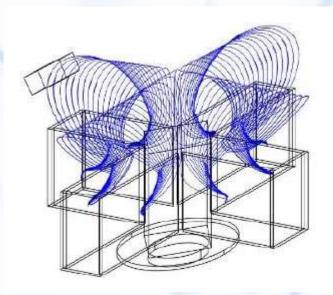
NovaSAR: UK radar satellite launches to track illegal shipping activity

By Jonathan Amos BBC Science Correspondent

O 16 September 2018

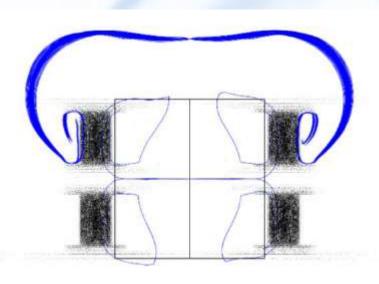



October 17th, 2018



Original QCT Magnetic Topology

Side view


Isometric view

Optimized Magnetic Field (QCT-Phoenix)

Side view

Isometric view


Imperial College London

Thank you for your attention

