

EPIC – Electric Propulsion Innovation & Competitiveness

NEW STRATEGIES FOR EP QUALIFICATION AND ENTRY INTO SERVICE

ADAPTING TO COMPETITIVE PRODUCTION LINE PRACTICE

Richard Blott Space Enterprise Partnerships **Richard Blott SEP**

WHEEL TAPPING

Acknowledgement: Brian Thurston

Advantages:

- Simple, effective technique,
- Easily manufactured, low cost tools.
- Exploiting a sophisticated readily available, measuring instrument the human ear.

Disadvantages:

- Time consuming and human intensive,
- No reliable prediction of failure (or not),
- High probability of major disruption when failure detected.

EPIC – Electric Propulsion Innovation & Competitiveness

WHEEL TAPPING

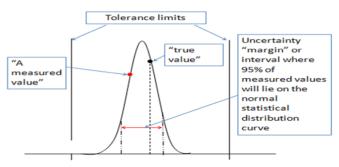
Today's very high speed trains require quantified confidence qualification to minimize risk of catastrophic failure and facilitate competitive production.

Current methods fully exploit:

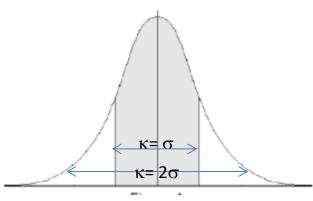
- A much better understanding of materials and advanced manufacturing processes,

- New diagnostic techniques (eg ultra-sound),
- More sophisticated design tools (CAD, FET, etc), test methods (modelling and simulation) and measurement practices (ISO17025).

To achieve:


- Quantative confidence in performance, particularly reliability and endurance,
- Efficient, competitive, reliable production.

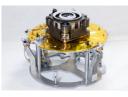
Acknowledgments: Alain Stoll, Luchini RS Group and Vyska Steel Works



OBSERVATION OR CONFIDENCE

•

Modelled/measured Results Distribution



Combined Estimated Standard Uncertainty Distribution

- Model and measurement distributions (observed):
 - Modelling:
 - Model results distribution,
 - Estimate modelling uncertainties.
 - Measurement:
 - Measured results distribution,
 - Estimate measurement uncertainty.
- Estimated Standard Uncertainty distributions (predicted);
 - Modelling:
 - Derive Combined Standard Uncertainty distribution (Monte-Carlo?).
 - Measurement:
 - Derive Combined Standard Uncertainty distribution.
- Confidence:
 - Apply coverage (κ) at σ , 2σ , 3σ etc for (quantified) confidence that future results be within a determined range.

EPIC – Electric Propulsion Innovation & Competitiveness

EP QUALIFICATION

- EP qualification also requires:
 - Qualification to high (quantified) levels of confidence,
 - Increasingly efficient, competitive (mass) production.
- Qualification requirements are a successful demonstration of:
 - Performance (thrust, Isp, efficiency): at a single operating point, multiple operating points or over a complete operating envelope,
 - Compatibility with parent spacecraft and associated equipments (mass, volume, thermal and power budgets; EMC, exhaust plume effects, etc)
 - Robustness: the ability to withstand the mechanical, thermal, vacuum, radiation environments and other hazards (eg micro-meteoroids),
 - Endurance: the total impulse (lifetime) required for the mission(s),
 - Reliability: consistent achievement of performance and endurance.

CHALLENGES AND STRATEGIES

- Challenges:
 - Demonstrate the equipment will meet all specified requirements,
 - Competitive (development amortised) recurring costs.
- Strategies:
 - Scoping:
 - Match performance demonstration to agreed requirements (eg agreed operating point(s)),
 - Match compatibility and robustness design to target platforms and orbits,
 - Optimise the efficiency of endurance and reliability demonstration in terms of time, cost and confidence.
- Here focus on thrusters and EP systems because:
 - Qualification practice for electronics, pointing mechanisms, pipework and harnesses is equally critical but well established,
 - Thruster reliability and endurance qualification cost and schedule.

ENDURANCE AND RELIABILITY TRADE-OFFS

- Successful single life test gives:
 - Some confidence design is capable of required total impulse,
 - Low confidence (sample of one) in repeatability,
 - Significantly extends qualification programme and very costly.
- Multiple life tests (probably needs 10 for a reasonable sample size):
 - High confidence in design and repeatability,
 - Unacceptably expensive except for very small systems.
- Proto-flight:
 - Reduces need for ground total impulse test,
 - May require longer in-orbit operation to be judged successful and in-orbit performance more difficult to monitor,
 - Infrequent opportunities and not necessarily representative of (main) target application.
- Multiple limited endurance tests:
 - Increases sample size and therefore confidence,
 - Can significantly reduce time and costs,
 - Not a continuous, full life (total impulse) demonstration,
 - Has the potential for high confidence at lower cost and shorter schedule.

MULTIPLE LIMITED ENDURANCE TEST OPTIMISATION

- Objectives:
 - High confidence that:
 - Design is capable of required total impulse,
 - Performance and total impulse is repeatable.
 - Cost and schedule minimized.
- Challenges:
 - Agree confidence levels and methodology with customers,
 - Optimize trade-offs between materials research, modelling and testing for cost and schedule.
 - Fully exploit all sources of evidence:
 - Materials behaviour under operating conditions,
 - Modelling both structural and performance properties,
 - Ensuring all test results contribute fully.
 - Configure performance, compatibility and robustness proving as contributory elements for reliability and endurance qualification.

MULTIPLE LIMITED ENDURANCE TEST FOUNDATIONS

- Precise build standard management:
 - Models,
 - Equipment under test and test facility/configuration.
- ISO 17025 measurement practice to give:
 - A methodology to validate modelling with test data,
 - Quantified confidence levels in modelled and measured performance.
- Managing customer expectation and trust through:
 - Realising benefits of lower cost and shorter schedule,
 - Engaging in realistic confidence level determination.

THE CHOICES

- Observed or Predicted:
 - Qualification based on observed (mainly test) results –
 "past performance is not (necessarily) a guide to the future ", or,
 - Qualification using proven engineering performance prediction methods – "quantified confidence in future performance".
- Test or Model:
 - Qualification based only on test results,
 - Qualification based on models validated by test results.