An advanced simulation code for Hall effect thrusters

P. Fajardo, M. Merino, E. Ahedo
pablo.fajardo@uc3m.es

EPIC Workshop
October 2017, Madrid
Contents

- Plasmas and Space propulsion Team (EP2-UC3M)
- CHEOPS H2020- Project
- NOMADS 2D hybrid code: architecture
- Particularities of PIC segment
- Electron fluid model
- Preliminary simulation results
- Conclusions
UC3M EP2 BACKGROUND

Equipo de Propulsión Espacial y Plasmas

- 16 researchers (~50% are PhD students)

EP2 main research lines:

- Theoretical and numerical modelling of Electric Space Propulsion: Hall thrusters, RF-based thrusters
- Modelling of Plasma-wave interaction
- Plasma-wall interaction analyses. Erosion studies. Plume-SC interaction
- Modelling of Magnetic Nozzles and electron cooling
- Active Debris removal

Main ongoing activities

- **Helicon Plasma Thruster Development:**
 - Based on Helicon waves (generation) & Magnetic nozzle (acceleration)
 - FP7-HPHCOM
 - HPT05: Joint EP2-SENER Design & Manufacturing (1kW)
- **H2020-MINOTOR: ECR accelerators**
 - Based on ECR (generation and heating) & Magnetic nozzle (acceleration)
 - Goal: to advance on the theoretical & technical development of the thruster
 - EP2 developing a full model of ECRA physics: Microwave-plasma interaction (i.e. heating), ionization, heating, flow, wall interaction, supersonic expansion, final beam energy, thruster performance
- **H2020-CHEOPS: Hall Effect Thrusters**
- **Modexval-ESA (Plasma Cooling)**
- **National Research plans (Electric Propulsion)**
H2020-CHEOPS: Hall Effect Thrusters

Motivation: HETs are the technological main solutions in near-earth EP

CHEOPS (coord. SAFRAN): large project aimed for development of next generation low-to-high power HET required simulation and testing tools

Simulation tools: Reduce development time/costs, reveal optimization opportunities,

EP2 large experience in modeling/simulating HET

EP2 is leader of WP on simulation activities. Main tasks:

- Development of advanced hybrid (PIC/fluid) code for HET
- Code validation with Safran prototypes

Main challenges:

- Full-2D fluid model of magnetized electrons
 - generic magnetic topologies
 - non-Maxwellian features
- Assessment on magnetic shielding physics
- Operation with alternative propellants & non-conventional conditions
- Scaling strategies for very low and very high power
An advanced simulation code for Hall effect thrusters – P. Fajardo, M. Merino, E. Ahedo
EPIC 2017
NOMADS: 2D hybrid code for Hall-effect thrusters

- **Hybrid:** PIC (ion and neutral heavy species) + Fluid (electron population)
- **2D Axisymmetric** (z-r) plasma simulator of chamber & plume
- Heritage from HALLMA and EP2PLUS, but designed with extended capabilities

Main Design Architecture:

- Pre and post simulation tools (matlab, python)
- Mesh generators for ion (PIC) and electron modules Magnetic mesh accepts cusps, zeros,...
- **CORE:** FORTRAN
 - PIC module
 - Electron module + Sheath
Particularities of PIC segment

Algorithms:
- **Particles stored in individual lists, under population control (PIC noise, controls computational resources)**
- **Macroscopic variables obtained by particle weighting (modifications in axis)**
- **Collisional processes carried out on cell-wise algorithm:**
 \[
 \begin{align*}
 Xe + e & \rightarrow Xe^+ + 2e \\
 Xe^+ + 2e & \rightarrow Xe^{++} + 3e \\
 Xe^+ + e & \rightarrow Xe^{++} + 2e
 \end{align*}
 \]
 Drawin
 Bell
- **Particle-surface interaction, extended surface weighting (time averaging, reduce noise)**
- **Kinetic Bohm correction: algorithmic density reduction forces a response from the electric potential within the domain, prompting sonic or supersonic ions**

Table:

<table>
<thead>
<tr>
<th>Surface type</th>
<th>Effects on ions</th>
<th>Effects on neutrals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transparent</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Free loss</td>
<td>Removal</td>
<td>Removal</td>
</tr>
<tr>
<td>Injection</td>
<td>Stochastic injection</td>
<td>Stochastic injection</td>
</tr>
<tr>
<td>Material wall</td>
<td>Recombination</td>
<td>Reflection</td>
</tr>
<tr>
<td>Sheath*</td>
<td>Normal velocity shift</td>
<td>None</td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\bar{n}_{sw}^{(k)} &= \frac{1}{\Delta t \Delta S} \sum_{p=1}^{N_{hit}} \frac{W_p}{v_{\perp,p}} \\
\bar{g}_{sw}^{(k)} &= \frac{1}{\Delta t \Delta S} \sum_{p=1}^{N_{hit}} \frac{W_p v_{\parallel,p}}{v_{\perp,p}} \\
\bar{n}_{sw}^{(k)} &= \frac{\Delta k_{avg} - 1}{\Delta k_{avg}} \bar{n}_{sw}^{(k-1)} + \bar{n}_{sw}^{(k)} \\
\end{align*}
\]
Electrons module

Main Features

• 2D solutions of Electron Temperature and Plasma Potential
• Magnetic Field Aligned Mesh (MFAM) - limiting the impact of numerical diffusion
 • Gradient reconstruction: Weighted Least Squares Face Interpolation
 • Improved by computing in r & z and projecting locally to the field dir.

• Electron population: 12 moment approximation from Bolzmann equation
 • Two-temperature description: \(T_{\text{par}} \& T_{\text{perp}} \)
• Quiasineutral, stationary formulation, Fourier type closure in heat-flow eq.
• Secondary models: Collisions: elastic-Coulomb, inelastic \(Xe + e \rightarrow Xe^* + 2e \)
• Non-classic electron transport modeled as an anomalous transport term
• Sheath model: Anode, Ceramic walls
Preliminary simulation results (I)

Base SPT-100 configuration:

- Aligned with Magnetic Field
- Ceramic boundary
- Perpendicular to Magnetic Field
- Exit boundary
- Anode boundary
- Axis

Computational resources:
- $1 \text{ ms} = 1\text{-}2 \text{ days}$
- $10 \mu s = 15\text{-}30 \text{ min}$
Preliminary simulation results (II)

Base SPT-100 configuration:

<table>
<thead>
<tr>
<th>PPU control</th>
<th>(V_d)</th>
<th>(\dot{m}) (Xe)</th>
<th>PIC (\Delta t)</th>
<th>NOMADS (\Delta t)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant voltage</td>
<td>300V</td>
<td>(5 \frac{mg}{s})</td>
<td>(10^{-8}s)</td>
<td>(10^{-10}s)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(I_d)</th>
<th>(P_d)</th>
<th>Thrust</th>
<th>(I_{sp})</th>
<th>(\eta_T)</th>
<th>(P_{jet})</th>
<th>(P_{sheaths})</th>
<th>(P_{ioniz.+excit.})</th>
<th>(P_{cahtode})</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.41(A)</td>
<td>723(W)</td>
<td>41(mN)</td>
<td>844(s)</td>
<td>0.24</td>
<td>168(W)</td>
<td>165(W)</td>
<td>57(W)</td>
<td>16(W)</td>
</tr>
</tbody>
</table>

No. PIC mesh elements: 1080
Avg. No. macroparticles:
- \(\sim 10^5 \) Neutrals,
- \(\sim 9 \times 10^4 \) Single Ions,
- \(\sim 9 \times 10^4 \) Double Ions

No. MFAM elements: 1326
No. cores: 20
Computation time: \(7.17 \times 10^4 \) s (\(\sim 20h \)): 4.6\(\times 10^3 \) s in PIC, 6.6\(\times 10^3 \) s in NOMADS

An advanced simulation code for Hall effect thrusters – P. Fajardo, M. Merino, E. Ahedo
EPIC 2017
Preliminary simulation results (III)

“Singular” SPT-100 configuration:

<table>
<thead>
<tr>
<th>PPU control</th>
<th>V_d</th>
<th>m (Xe)</th>
<th>PIC ∆t</th>
<th>NOMADS ∆t</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant voltage</td>
<td>300V</td>
<td>5 mg/s</td>
<td>10⁻⁸ s</td>
<td>10⁻¹⁰ s</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>I_d</th>
<th>P_d</th>
<th>Thrust</th>
<th>I_sp</th>
<th>η_T</th>
<th>P_jet</th>
<th>P_sheaths</th>
<th>P_ioniz.+excit.</th>
<th>P_cathode</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.94A</td>
<td>881W</td>
<td>48 mN</td>
<td>980 s</td>
<td>0.26</td>
<td>229W</td>
<td>162W</td>
<td>72W</td>
<td>10W</td>
</tr>
</tbody>
</table>

- **No. PIC mesh elements**: 1080
- **Avg. No. macroparticles**:
 - ~10⁶ Neutrals,
 - ~7×10⁴ Single Ions,
 - ~7×10⁴ Double Ions
- **No. MFAM elements**: 2453
- **No. cores**: 20
- **Computation time**: 18.8×10⁴ s (~50h):
 - 4.0×10³ s in PIC,
 - 18.4×10⁴ s in NOMADS

An advanced simulation code for Hall effect thrusters – P. Fajardo, M. Merino, E. Ahedo

EPIC 2017
Conclusions

- Development of a new 2D Hybrid code for HET
 - In the frame of H2020 and EPIC
 - PIC: for heavy particles + fluid for electrons
 - Potentially expandable to other thrusters

- Main characteristics were described

- Preliminary simulations have been obtained, further improvement is required

- Future simulations will include both parallel and total electron temperature

- Future developments: further parallelization, validation with experimental data, additional models,
Thank you! Questions?

The research presented has received funding from Spain's R&D National Plan, Grant No ESP2016-75887 and the EU’s Horizon2020 Research and Innovation program, Grant No 730135

Contact:
ep2@uc3m.es
web: ep2.uc3m.es
BACK-UP
Electron population fluid model (II)

Current continuity + Momentum eq. → Generalized Ohm’s law:

\[
\{GR\} \cdot \{\phi_E\} = \{D\} + \{GR\} \cdot \{p_{e,E}\} + \{B\} + \{I_{d,E}\}
\]

Thermal Energy Density eq. + Semi-implicit temporal discretization:

\[
\{p_{e,E}\}_{t+1} = \Delta t \left[\left(\{A\}^t + \{Ex\}^t \right) \cdot \{p_{e,E}\}^{t+1} + \{Q\}^t \cdot \{GR\} \cdot \{p_{e,E}\}^{t+1} + \{CS\}^t \right] + \{p_{e,E}\}^t
\]

Parallel Internal Energy eq. {...}

Ancillary models:

- **Collisional models:**
 - Elastic collisions (\{D\}): e-n (Hayashi), e-\text{i}_Z (Coulomb)
 - Additional inelastic collisions: \text{Xe} + e \to \text{Xe}^* + 2e (Hayashi)
 - Non-classic electron transport modelled as an additional *anomalous* collisionality term:
 \[
 \nu_{e^*} = \nu_e + \alpha_{ano} \Omega_{e,e}
 \]

- **Sheath model:**
 - Anode: \[\mathbf{j}_e \cdot \mathbf{n}_b \bigg|_{F,j} = j_{sheath,metallic} (\Delta \phi_{sheath}, n_e, T_e); \Delta \phi_{sheath} = \phi_{F,j} - \phi_{wall}\]
 - Ceramic walls (BN): \[\Delta \phi_{sheath} \bigg|_{F,j} = j_{sheath,dielectric} \left(\sum_{Z=1}^{2,3,...} j_{iZ} \cdot \mathbf{n}_b, n_e, T_e \right)\]

“Far-field” Boundary Conditions: non-homogeneous Neumann based on imposed current and heat-fluxes:

\[
(j_e + j_i) \cdot \mathbf{n}_b = 0; \quad q_e \cdot \mathbf{n}_b \bigg|_{F,j} = 0
\]
NOMADS: 2D hybrid code for Hall-effect thrusters

- **Hybrid**: PIC (ion and neutral heavy species) + Fluid (electron population)
- **2D Axisymmetric** (z-r) plasma simulator of chamber & plume
- **Heritage** from HALLMA and EP2PLUS, but designed with extended capabilities

Main Design Characteristics:

- **Mesh generators** for ion (PIC) and electron modules
 - Magnetic mesh accepts cusps, zeros,...
- **Reduced PIC noise:**
 - multiple independent populations
 - cell population control algorithms
- **Electron + electric module:**
 - 2 Temperatures population: T_{parallel} & T_{perp}
 - Secondary e-emission
 - Accurate sheath/presheath Bohm forcing
 - Variety of wall materials/conditions
Preliminary results (fluid module)

An advanced simulation code for Hall effect thrusters – P. Fajardo, M. Merino, E. Ahedo
EPIC 2017

1 ms = 1-2 days
10 μs = 15-30 min
Updates on Gradient Reconstruction (I)

GR based on the Weighted Least Squares Face Interpolation:

- Based on magnetic coordinates λ (magnetic stream function) & σ (magnetic scalar potential), for gradients in the parallel and perpendicular directions to the magnetic field:
 - Singular for $B=0$
 - Depends on a good previous calculation (numerical integration) of magnetic coordinates (not defined analytically for the domain)

- Alternatively, it is possible to derive spatially (with respect to r & z) and project locally to the perpendicular and parallel directions...

\[
\left. \frac{d\psi}{dx} \right|_{F_{ij}} = \sum_i c_i \psi_i
\]

\[
\begin{align*}
\frac{\partial \lambda}{\partial r} &= -r B_z, \quad \frac{\partial \lambda}{\partial z} = r B_r, \quad \nabla_\parallel \equiv B \frac{\partial}{\partial \sigma} \\
\frac{\partial \sigma}{\partial r} &= B_r, \quad \frac{\partial \sigma}{\partial z} = B_z, \quad \nabla_\perp \equiv r B \frac{\partial}{\partial \lambda}
\end{align*}
\]
Updates on Gradient Reconstruction (II)

Gradient and integration errors for trial function $\psi = z + r$ on a MFAM with a singular point using WLSQRFI 1st Order method:
1st Order derivative errors:

Analytical derivatives for magnetic coordinates are obtained through the Inverse Jacovian.
Errors after integration of 1st Order derivatives