QinetiQ Electric Propulsion

Gridded Ion Thrusters

Kevin Hall

KWHall@QinetiQ.com www.QinetiQ.com

EPIC London, UK 17th October , 2018

QinetiQ Introduction

QinetiQ employs over 6,000 experts in the fields of defence, aerospace, maritime, space and various other related markets.

• 5 Major UK Sites:

International :

Farnborough, Boscombe Down, Malvern, Portsdown Hill & Haslar USA, Canada, Australia, Belgium, Sweden

QinetiQ Gridded Ion thrusters October 2018 | © QinetiQ

2

QinetiQ Space

QinetiQ Electric Propulsion

In development at QinetiQ Farnborough since late 1960s.

Cathode development

- Hollow cathode technology
- Cathodes for T5, T6, HETs
- Emission currents up to 50A

Artemis

ESA Telecoms Satellite

- T5 Cathodes for UK10 thrusters
- T5 Grid Assembly for UK10 thrusters

- One of a few centres around the world

ESA low orbit mission

- Two T5 thrusters
- >36000 hrs operation (on single thruster)

BepiColombo

ESA mission to Mercury

- QinetiQ EP System
- Four T6 thrusters
- Launch date 20th
 October 2018
 QINETIQ

 $4 \qquad {\sf QinetiQ} \ {\sf Gridded} \ {\sf Ion} \ {\sf thrusters} | \ {\sf October} \ {\sf 2018} \ | \ {} \ {} \ {\sf O} \ {\sf QinetiQ}$

QinetiQ Gridded Ion Engines (GIEs)

Primary Advantages of GIEs

• High fuel efficiency: Specific impulse (I_{sp}) ~ 4000s [Typ. 10x efficiency of chemical propulsion]

Lower propellant consumption enables ... <u>Lower Launch Mass</u> / <u>Larger Payload</u> / <u>Longer Life</u> (or combination thereof)

- Wide operating envelope (power versus specific impulse versus thrust)
 - Specific impulse can be traded to provide higher thrust, for a given power **Dual mode**
- Wide throttling range optimises use of available power over mission
- Narrow beam divergence (15° half cone) Reduces plume impingement / eases accommodation

QINETIQ

QinetiQ Kaufman Gridded Ion Engines

T5: 700 W class thruster

- 10 cm active grid area
- Thrust capability <1 25 mN
 - Grid set can be optimised for different thrust ranges
- High lsp >3000s
- > 3MNs

6

• Mass 2.5 kg (excl. alignment bracket)

H2020 EPIC (GIESEPP) enabling QinetiQ to industrialise the GOCE T5 thruster to improve competitiveness as a recurring product.

T6: 5 kW class thruster

- 22 cm active grid area
- Thrust capability 30mN to 180 mN
 - Grid set can be optimised for different thrust ranges
- High Isp >4000s
- > 8MNs
- Mass 8.3 kg

H2020 EPIC (GIESEPP) enabling QinetiQ to

maximise competitiveness of the BepiColombo T6 through improvements to the QinetiQ supply **QINETIQ** chain through T5 and T7 developments.

QinetiQ Ring Cusp Gridded Ion Engine – T7

- 5 to 7 kW class Gridded Ion Thruster
- Thrust capability up to 250 mN
 - Grid set can be optimised for different thrust ranges
- High Isp: ~3000s to ~4000s
- Dual Mode operation:
 - Variable power/thrust ratio: 31 W/mN to 24 W/mN

H2020 EPIC (GIESEPP) enabling QinetiQ to

- Improve competitiveness
 - Adoption of a Ring Cusp discharge chamber configuration
 - Improves electrical efficiency over the T6's Kaufman configuration
 - Cost reduction
- Incremental Development
 - Shares many design features with T6 thruster

Market Applications (1/2)

Market/Application	EP Function	T5	T6	Τ7	Comment			
LEO Small Satellites	Primary propulsion (New – emerging)	~			 QinetiQ existing heritage <u>T5 thruster</u> is able to meet near term mission requirements and provide competitive edge QinetiQ is developing <u>T5 industrialisation</u> is reducing the recurring cost of the thruster to improve competitiveness and enable new missions based on smaller lower cost platforms <u>T5 performance enhancement</u> will not only extend the capability of the thruster but improve the performance of the existing thrust range 			
Constellations	Primary propulsion (New – emerging)	V	✓	✓	 QinetiQ existing heritage <u>T5 and T6 thrusters</u> are able to meet near term mission requirements QinetiQ is developing <u>Dual Mode</u> (Isp) T7 provides a higher thrust mode to reduce the time to orbit which is likely to provide a better compromise between time to orbit and the propellant mass saving. <u>T7 Ring Cusp thruster</u> offering a lower cost product & increased performance capability (lifetime / power / thrust) <u>T5 industrialisation</u> is reducing the recurring cost to improve the competitiveness, for low cost small platforms 			
Geo Telecoms Satellites	North-South Station-Keeping <i>(established)</i>		~	~	 QinetiQ existing heritage <u>T6 thruster</u> is able to meet near term mission requirements QinetiQ is developing <u>Dual Mode</u> (Isp) T7 to provide a higher thrust mode to reduce the time to orbit , whilst retaining the high fuel efficiency for station keeping over the operation mission <u>T7 Ring Cusp thruster</u> offering a lower cost product, & increased performance capability (lifetime / power / thrust) 			
8 QinetiQ Gridded Ion thrustersl October 2018 © QinetiQ								

Market Applications (2/2)

Market/Application	EP Function	T5	T6	T7	Comment
In-Orbit Servicing of Geo Telecoms Satellites (i.e. mission extension; end-of- life deorbiting; potentially in – orbit refuelling also)	North-South Station-Keeping PLUS Orbit transfer <i>(New –</i> <i>emerging)</i>	~	~	~	 QinetiQ existing heritage <u>T5 and T6 thrusters</u> are able to meet near term mission requirements and provide competitive edge QinetiQ is developing <u>T7 Ring Cusp thruster</u> offering a lower cost product and increased performance capability (lifetime / power / thrust) to enable the customer to get the most operational life out of the vehicle. <u>Dual Mode</u> (Isp) means the full capability of the T7 is available to the mission designers, providing greater operational flexibility in planning, but also in-flight to optimise mission as it progresses. <u>T5 industrialisation</u>, means that it is also available for in-orbit servicing vehicles based on smaller platforms
Space Transportation Servicing exploration infrastructures (e.g. on/around Mars or Moon)	Primary propulsion (New – emerging)		~	~	 QinetiQ existing heritage <u>T6 thruster</u> is able to meet near term mission requirements and provide competitive edge QinetiQ is developing <u>T7 Ring Cusp thruster</u> offering a lower cost product and increased performance capability (lifetime / power / thrust) to enable the customer to maximise efficiency of its transportation solution. <u>Dual Mode</u> (Isp) means the full capability of the T7 is available to the mission designers, providing greater operational flexibility in planning, but also in-flight to optimise mission as it progresses.
Deep Space Missions	Primary propulsion (established)	~	V	~	 QinetiQ existing heritage <u>T5 thruster</u> performance to enable smaller missions <u>T6 thruster</u> launching on BepiColombo in October 2018 QinetiQ is developing <u>Dual Mode</u> (Isp) means the full capability of the T7 is available to the mission designers, providing greater operational flexibility in planning, but also in-flight to optimise mission as it progresses. <u>T5 industrialisation</u>, means that it is also available for such missions exploiting smaller spacecraft and/or lower levels of power available further out in the solar system. <u>T7 Ring Cusp thruster</u> offering increased performance capability (lifetime / power / thrust) Common product for commercial & institutional customers, all benefiting from volume cost benefits and common heritage .

Qualification and Acceptance

• Testing a GIE thruster is a significant portion of the cost and schedule

- Both in terms of qualification and acceptance
 - Effort required to reduce the cost and timescales for both activities
- New approaches required to meet demand from emerging markets
 - Constellations driving the cost and timescales
 - Current approaches not suited to meet emerging market requirements
 - Difference in the risk appetite of customers
 - Major challenges still exist to address these new market drivers
- Work required to address these issues across the complete EP system
 - Thruster, FCU and PPU

• Different challenges for each activity

- Qualification of a new development
- Delta qualification of a previously qualified thruster
- Acceptance testing for a recurring build

Current Approach - Qualification of a new development

- Standard qualification campaign for space hardware
 - Performance testing, thermal vacuum testing, mechanical testing, LIFETEST....
- Lifetime qualification is the most expensive part of the test campaign
 - Relies on long duration tests that match or exceed the expected lifetime
 - Margins applied to lifetime of 1.3x for lifetime and 1.5x for operational cycles
 - May also include additional worst case assumptions to account for
 - Failures
 - Uncertainty in the use cases of the thruster
 - Production of thruster models for lifetime prediction
 - Current models not validated
 - Requires significant test data to allow for approximations of the life time predictions to be made

• Main challenges are

- The expense and long timescales to complete qualification
 - No reliable approach to accelerated life testing has yet been identified
- Work funded on a project by project basis with data ownership retained by commercial customer
 - Sharing of data between life tests required to avoid repeating similar test campaigns for each customer

Current Approach - Delta qualification of a previously qualified thruster

- Limited testing tailored to cover the areas under development
- Some or all of the full qualification test campaign required
 - Aim for all tests to be 'value adding'
- Lifetime delta qualification
 - Inclusion dependent on the impact on the main life limiting elements of the thruster
 - Short duration tests that feed into the modelling from the qualification test
 - Limits the cost and timescales with minimal increase in the risk from a full life test
 - Requires an accurate model generated during the original development programme

• Main challenges are

- Similar challenges to qualification
- Approach requires data to be readily available from qualification campaign
 - Commercial restrictions may limit access to data requiring full life test
- Modelling tools need to be mature enough to enable this approach

QINETIQ

Current Approach - Acceptance of a qualified thruster

- Acceptance test campaign required for each thruster
 - Similar suite of tests as per qualification but with reduced levels and durations
 - Performance testing, thermal vacuum testing, and mechanical testing
 - Currently accounts for a significant proportion of the total cost of the thruster

• Main challenges are

- Reducing the costs and timescales to complete acceptance
 - Need to maintain levels of reliability and traceability
- Generating statistical evidence to reduce scope and / or remove acceptance tests
- Approach to testing of multiple thrusters

Future approach to Qualification and Acceptance

• Divergence of approach to Qualification and Acceptance

- Qualification will still be based on long duration tests
 - Significant improvements required in modelling to allow for alternative approaches
- Acceptance will be driven by better understanding of limitations in variability in the recurring build standard as production rates increase
 - Targeted testing based on experience with step away from all encompassing test campaigns
 - Reduction of the scope of testing is Work in progress and key objective for QinetiQ

QinetiQ welcomes the opportunity to work with peer group to streamline qualification

- Interest in gridded ion community working together on common approach to qualification of lifetime
 - Thruster suppliers and modelling houses with Agency support

Conclusions

Market for Electric Propulsion technology is increasing ...

- Increasing uptake in the traditional GEO telecom satellite market, as well as for orbit raising function.
- Adoption for satellite constellations
- Continued use for interplanetary missions
- Enabling new applications such as space transportation, in-orbit servicing and new/novel LEO application.

GIEs, such as QinetiQ's T-series, offer the greatest fuel efficiency options to customers

 Industrialisation is driving costs down, from its science applications heritage (bespoke, one-off, highperformance)

H2020 EPIC is realising

.... incremental changes to QinetiQ's proven technology to improve competitiveness in global market

Further work required on developing a lower cost approach to Qualification and Acceptance...

...QinetiQ welcomes the opportunity to discuss optimisation of the approach taken

KWHall@QinetiQ.com

www.QinetiQ.com