QVS

BOOSTING SCIENTIFIC KNOWLEDGE

EN 9100

Early test results for AQUAJET and XMET

Southampton

EPIC Workshop 2018 16th OCTOBER

AVS UK Ltd. | www.a-v-s.uk.com +44 (0) 1235 56 7095 avs@a-v-s.uk.com

Alberto Garbayo

Daniel Staab

BD Manager EP Engineer

QVS SPACE

SMALL SATELLITES

Mini-MET

Microwave Electrothermal Thruster Ammonia

- dimensions: 1U + tuna
- Mass: 50 g (thruster), 1.4 kg (system, wet)

AQUAJET

Cathodeless ECR thruster Water, xenon or argon.

- Dimensions: 0.8cm radius, 5cm length
- Mass: 600 g
- Alternative propellants

ICE CUBE

Water electrolysis chemical (hybrid) Continous mode

High density energy storage

Dimensions: 1U Mass: ~1.2kg

ELECTROSPRAY

Ionic liquid propellant, highly modular.

High Efficiency / Higher thrust / Higher total impulse alternative to FEEP (Enpulsion).

TELECOM/GEO SATELLITES

ECR GIE

ECR Gridded ion engine

- Dimensions: 10cm radius, 8cm length
- Mass: 2kg
- 1kW

XMET

Microwave Electrothermal Thruster Xenon

- Dimensions: 5cm radius, 10cm length
- Mass: 500q
- 1kW

IMPULSE

Integrated Microwave PropULsion Architecture for satEllites: For fully all-electric missions, performing orbit raising, station keeping and reaction control

XJET (AQUAJET)

Scalable to: ~10mN, ISP=1500s @200W ~30mN, ISP~4000s @1kW

scalable

ICE CUBE

Scalable up to ~300 mN @1.5kW (continuous mode)

	ISP [s]	Thrust [mN]	Power [W]	Efficiency [%]	Propellant
AQUAJET	1000	1	30	16	Water, Xenon , Argon, any
ECR GIE	3000 - 5500	20 - 170	Up to 1000	50	Xenon
XMET*	90 - 120	Up to 500	Up to 1000	50	Xenon
Mini-MET	300 - 550	1 - 4	25	20	Ammonia
Electrospray	4500	0.5	17	60	Ionic liquid
ICE CUBE	310	2	20	20	Water 9100

QVS SPACE

Propulsion system comparison

Specific impulse against thrust-to-power ratio as occupied by current EP systems and as achievable by ECR and MET

Development enabled by NSTP Fast Track

ECR-type (AQUAJET):

- At high power levels, performance expected to be competitive with GIE, HET
- Low thrust, high ISP solution
- Lower-cost & more suited to alternative propellants than GIE, HET

MET-type (XMET):

- With alternative propellants (H2O, NH3), reach higher ISP than arcjet/resistojet
- **Medium thrust & ISP solution**
- Fills gap between high-power & low performance EP families

1. AVS | SPACE PROPULSION OVERVIEW

2. AQUAJET

3. XMET

AQUAJET

Electrodeless ECR thruster w. magnetic nozzle:
@ 2.45 GHz

- Efficient ionization, outperforming helicon-type
- Simple & low-cost design
- No grid erosion
- HIGHLY FLEXIBLE PROPELLANT CHOICE: Kr, Ar, Ne, Xe, CO2, N2, O2, air
- Xe, H2O & NH3 of particular interest to us
 - -> simply adjust chamber length & radius to optimise
 - -> designed, assembled & tested highly flexible prototype

QVSISPACE

Plasma source

ECR condition 0.0875 Tesla at 2.45 GHz

- Radial & axial plasma confinement
- Magnetic nozzle
- Coaxial antenna chamber

Break-through developed by ONERA lab*:

 $\eta_T \sim$ 13% at 1 mN thrust, ISP \sim 1300 s (Xenon), \sim 50 Watts -> MINOTOR

Dielectric sleeve: H2O plasma erosion

*Cannat, F., Lafleur, T., Jarrige, J., et.al. (2015), *Physics of Plasmas*, 22, 053503 Vialis, T., Jarrige, J., Packan, D. (2017), IEPC-2017-378 + references therein

Why H₂O?

- "ultimate green propellant", storage, cost, ISRU ?
 (see COMET, HYDROS products in US)
- Predicted performance promising: ionization cost & η_T v. similar to argon ($T_e >$ 5 eV)

Approach

- Simple analytical model & flexible geometry prototype
- Direct performance measurements
- First tests of H₂O propellant, benchmark against Argon

ELECTRIC PROPULSION

Petro, E. M. & Sedwick, R. J. (2017) Journal of Prop. and Power. 33:6

Flexures

QVS SPACE

AQUAJET

Test campaign

- "Daedalus" chamber 1.5 x 2.5 m
 - -> cryogenic + turbomolecular pumping: 12000 l/s (air)
 - -> pressure during firing $\sim 2 6 \times 10^{-5}$ mbar @ 0.1-0.3 mg/s
- Thrust balance calibration:
 - -> account for stiffness including feed lines
 - -> rotational stage + pulley system moves cal. mass
- Thermal drift compensation: displacement at switch-off

Rigid Support

AQUAJET

Milestones to date

we have demonstrated for the first time:

- Use of H2O propellant: reliable ignition & stable operations across 210 firings
- Power up to ~180 Watts (previous record in literature = 50 Watts)
- Linear performance scaling with power (Ar, Xe)

Performance measurements to date focussed on Ar & Xe benchmarks: ~ 100 test firings w. direct thrust data @ 0.1 – 0.7 mN

ELECTRIC PROPULSION

2 prototype configurations
 with Argon, and
 corresponding linear fits.
 We measured 10 such series
 to date.

AQUAJET

Next steps

- Complete Xe, H2O performance tests at lower background pressure
- Demonstrate Ammonia propellant
- Breadboard model re-design from lessons learnt
- Antenna erosion study

2 prototype configurations
 with Argon, and
 corresponding linear fits.
 We measured 10 such series
 to date.

1. AVS | SPACE PROPULSION OVERVIEW

2. AQUAJET

3. XMET

INTEGRATED MICROWAVE PROPULSION ARCHITECTURE (IMPULSE)

XMET

0.5-1 KW first fully all-electric EU platform

Southampton

Microwave electrothermal RCS thrusters

Thrust: 200-500 mN

ISP: ~1005

Cylindrical resonant cavity

Xenon propellant

2.45 GHz solid state MW generator

ELECTRIC PROPULSION

-> Angelo Grubisic presentation

MET background

Developed at Penn State university

- cavity radii: 50-7 mm @ 2.45-17.8 GHz
- power ~ 2000-20 W
- thrust ~ 300-1 mN
- Highly flexible propellant choice
 demonstrated: N2, O2, NH3, H2O, He, ...
- Promising performance for NH₃ and H₂O:

propellant	ISP [s]	Thrust [mN]	Power [W]
NH3	550	84	350
H2O	800	120	1000

- Resonant cavity free-floating plasma discharge & conventional nozzle
- Simple, rugged, cheap, highly scalable
- Outperform arcjet, resistojet

QVS SPACE

XMET at AVS

XMET as part of IMPULSE architecture: Ar, Xe propellant test campaign

- Direct & indirect thrust measurements
- Optimal nozzle size & operating pressure
- Determine power required for ignition & firing at desired performance (up to 1 kW)

h g

- First European MET thruster
- Optimised cavity design compared to Penn State
- Breadboard model hot-fire tests at Southampton
- Flexible design w. exchangeable nozzle insets, tuneable cavity height

Cavity Model

- EM model via multiphysics software
- Cylindrical symmetry
- Key metrics: f_{res}, FWHM, |E_max|
- Material & geometry optimisation

Ignition at low flow rate

QVS SPACE

Predicted breakdown field strength: < 10 Watts

MW breakdown voltage (2.8 GHz): data from Liskovskiy (1999) & Cook et al (2010)

Early Testing: Argon

Cavity Tuning

- sharp resonance confirmed:

Ignition

- achieved at ~4 Watts

Stable operation

- up to 220 Watts (60 mg/s)100 Watts (140 mg/s)

Next steps

- Complete Argon performance tests: higher power, flow rates
- Demonstrate Xenon propellant
- Direct thrust measurements
 - Breadboard model re-design from lessons learnt

Southampton Southampton

