# **Hispasat and Electric Propulsion**

David Mostaza-Prieto

Space Segment Engineering & Programs
Development



# Hispasat and Electric Propulsion



1 About Hispasat

2 Impact of electric propulsion in geostationary operations

Present and future of electric propulsion in GEO platforms

1

hispasat



#### **Main facts**

- Satellite communications operator with a significant presence in the Iberian Peninsula and Latin America.
- Leader in broadcasting of contents in Spanish and Portuguese.
- More than 1,250 TV and radio channels, including major DTH platforms.
- Driving force behind the Spanish aerospace industry.





#### **Hispasat fleet**



Electric propulsion satellites

Bi-propellant

# hispasat

#### **Hispasat fleet: electric platforms**



- Developed by OHB System AG with the European Space Agency and HISPASAT
- First mission of the SmallGEO platform
- 8 SPTs- 100 fixed to the bus
- 6 manoeuvers per day using 4 different SPTs
- Launched January 2017: 1st Soyuz mission to GTO

#### **AMZ5 & H30W-6**

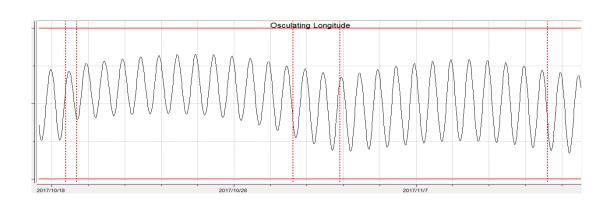


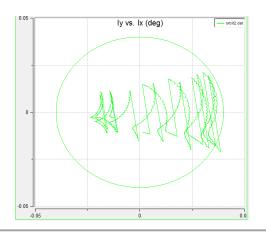
- Developed by Space Systems Loral
- Based on SSL 1300 Omega 3 platform
- 4 SPTs- 100 mounted on 2 articulated booms
- 2 manoeuvers per day using 2 different SPTs
- AMZ5 launched in Sept 2017 (Proton)
- H30W-6 scheduled for end of 2017 (Falcon 9)

- Main differences
- Flight dynamics
- Localization
- Manoeuver monitoring

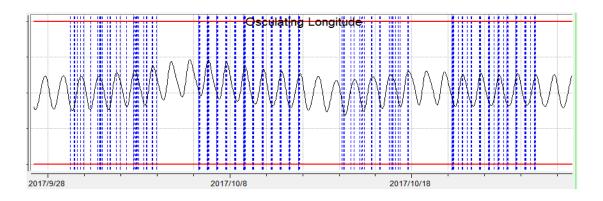


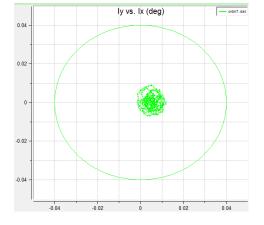



#### **Main differences**


| Bi-propellant -> High thrust                                             | Electric -> Low thrust                                                                       |
|--------------------------------------------------------------------------|----------------------------------------------------------------------------------------------|
| <ul> <li>Short manoeuvres ~5-10 minutes</li> </ul>                       | <ul> <li>Long manoeuvers ~20-40 min</li> </ul>                                               |
| • 2-3 manoeuvres every 2 weeks                                           | <ul> <li>Manoeuvres every day, up to 6 per day</li> </ul>                                    |
| <ul> <li>Uncoupled longitude and inclination corrections</li> </ul>      | <ul> <li>Coupled effect: longitude and inclination<br/>corrected at the same time</li> </ul> |
| <ul> <li>Different manoeuvres and thrusters for<br/>EW and NS</li> </ul> | <ul> <li>Low torque -&gt; small impact on attitude</li> </ul>                                |
| <ul> <li>High torque -&gt; potential impact on attitude</li> </ul>       |                                                                                              |




#### Flight dynamics

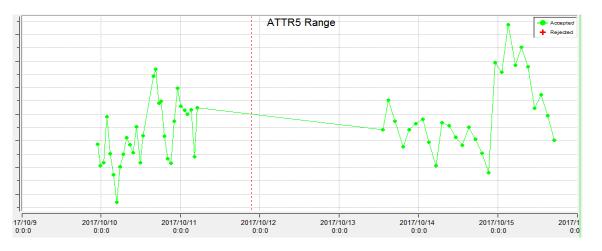

- Coupled corrections require more complex FLD algorithms (non-linear optimization)
- Possible to control to tighter limits without penalty



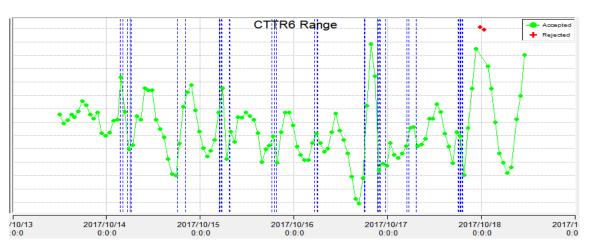


Bi-prop






Electric

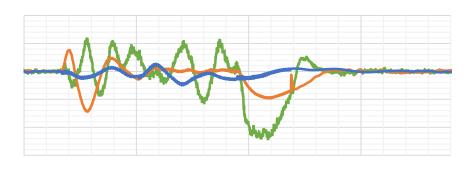



#### **Localization / orbit determination**

- Manoeuvers every day requires continuous tracking of the satellite position
- From ranging campaigns to continuous ranging
- Evaluation of manoeuver and thruster performances is not deterministic -> statistical methods



#### Bi-prop




Electric



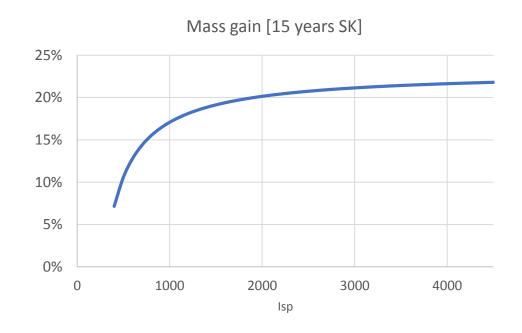
#### Manoeuver monitoring

- Real-time monitoring becomes less critical
- Amount of data to be processed and monitored increases
- More automation and new ways of visualizing data





Bi-prop Electric


3

hıspasat

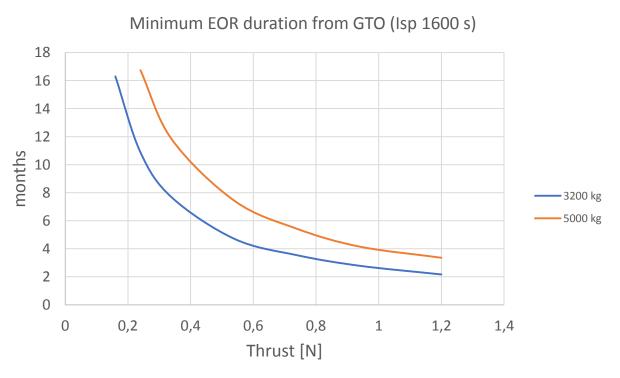


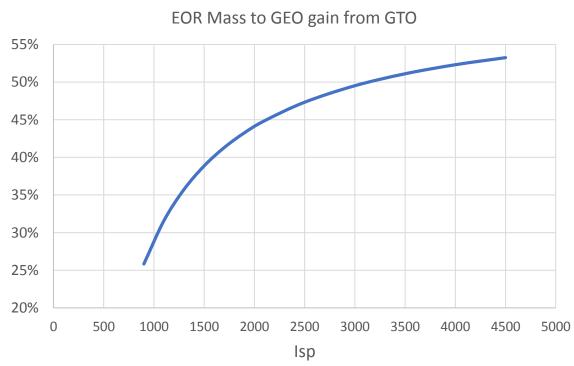
#### **Hybrid satellites**

- Evolution of all bi-prop satellites
- Bi-prop LEOP
- Electric thrusters added (extra dry mass) for stationkeeping
- Potential mass gains ~ 20 %
  - Allows less performance launchers (i.e Falcon 9) to compete in the mid-sized geosynchronous satellite range
  - Typically not all the mass gain is used -> extra orbit manoeuvre lifetime






#### All-electric satellites: Electric orbit raising


- Potential mass gain from GTO ~ 50 %
- Potential mass gain from LEO: above 100 %
- Main drawback: mission duration
- A reasonable transfer duration can be easily accommodated in some cases (i.e. replacement satellites)
- Not suited for applications where time to market is critical

|          |     | GTO            | GEO     | Dry Mass       |          |
|----------|-----|----------------|---------|----------------|----------|
| Ariane 5 | Up  | <b>6000</b> kg | 3600 kg | <b>2700</b> kg | Bi-prop  |
|          | Low | <b>3500</b> kg | 2900 kg | <b>2800</b> kg | Electric |



# All-electric satellites: Electric orbit raising







#### **Conclusions**

- Electric propulsion is a successful way to enhance competitiveness of GEO satellites
  - More operational lifetime
    - Not very interesting beyond ~20 years
  - Higher payload mass
    - Interesting for some applications (VHTS, replacement satellites)
  - Lower launch mass
    - Possibility of using smaller and less expensive launchers
- Current state of the art is adequate for station keeping
- Improving thrust-to-power ration would have great impact on electric orbit raising
  - Minimizing transfer duration
  - Allowing injection in lower orbits

# www.hispasat.es