Electric Propulsion in Space Missions

Jose Gonzalez del Amo, ESA

26 October 2017, EPIC Workshop, Madrid
1. General Technology Overview

2. Applications
 2.1 Science and Earth Observation
 2.2 Commercial Spacecraft
 2.3 Exploration
 2.4 Navigation

3. Important Technology Developments

4. ESA Propulsion Lab

5. H2020: EPIC

6. Conclusions
The most important advantages of electric propulsion with respect to conventional propulsion systems are:

- **Low propellant consumption**
 - More payload
 - Longer mission
 - Cheaper launchers

- **Low, highly controllable thrust**
 - Precise pointing

- **Science**
 - Telecoms
 - Earth Observation

- **Science**
 - Earth Observation
Spacecraft Electric Propulsion (EP) technologies use electrical power to accelerate a propellant and, consequently, to apply a change of velocity to the spacecraft in a very efficient manner.

Depending on the process used to accelerate the propellant, electric propulsion thrusters are classified in:

- Electrothermal
- Electrostatic
- Electromagnetic
Resistojet
Arcjet

Propellant

Anode

ARC discharge

Propellant

Jet

ELECTROTHERMAL THRUSTERS

219
Gridded Ion Engines

Radiofrequency Ionisation Thruster (RIT) Working Principle

Electron Bombardment Thruster Working Principle
Field Emission thrusters

FEEP is an electrostatic type thruster:

⇒ thrust is generated by ions accelerated by electric fields at high exhaust velocities;

⇒ electrons need to be emitted downstream in the same quantity for charge balancing.

\[qV_e = \frac{1}{2} M v_e^2 \quad \Rightarrow \quad v_e = \sqrt{\frac{2qV_e}{M}} \]

\[\dot{m}_i = \frac{MI_b}{q} \quad \Rightarrow \quad I_b = I_e - I_a \]
Hall-effect thrusters
Highly Efficient Multistage Plasma (HEMP),

HEMP thruster

Plasma discharge (blue shaded area) simply ignites when Xe Gas is, anode voltage and neutraliser are turned on.

Plasma Potential along thruster axis (sketch)

Xe gas

B-Field

E-Field

R_{1}

R_{2}

R_{3}

Anode

symmetry axis

e^{-}

Xe^{+} ion beam + e^{-}

hollow cathode neutraliser emits electrons required for discharge ignition and ion beam neutralisation
ELECTROMAGNETIC THRUSTERS

MPD Thrusters

PPT Thrusters
Helicon Antenna Thruster
Electric Propulsion Characteristics

Required Performance for Deep Space Missions

European Thrusters including low TRL

- RJ
- Arcjets
- Hydrogen Arcjets
- Colloid
- HET
- GIT
- SF-MPD
- PPT
- DCT(HEMPT)
- AF-MPD
- FEEP
- H2 Arcjets
- Resistojet
- SF-MPDs
- PPTs
- DCT(HEMPT) - LowTRL
- HET - EU
- HET - Int.
- GIT - EU
- GIT - LowTRL
- GIT - Int.
Electric Propulsion
System Main Components

- Thruster components
- Propellant Components
- Power Components
Elements of an EP System

Development

POWER ELECTRONICS
- Power Processing Unit
- Thruster Switching Unit
- Electrical Filter Unit (HET)
- Pulse Forming Network (MPD)

THRUSTER
- Thruster
- Other Components (cathode, neutraliser, grids, discharge chamber)

POINTING MECHANISM (optional)

PROPELLANT SYSTEM
- Propellant Tank
- Pressure Regulators
- Flow Controllers, Filters
- Valves

PERFORMANCE and LIFE QUALIFICATION TESTS
GOCE

Smart-1

Post-GOCE

LISA Mission

LISA Pathfinder Mission

Bepi-Colaombo
Previous and Current Missions

- Smart-1 reached the Moon in 2006 using a PPS1350 Hall Effect thruster.

- Bepi Colombo will be launched in 2017 and will use four T6 Ion Engines for the cruise to Mercury.

- GOCE is using T5 Ion Engines to provide real-time drag compensation to allow high accuracy measurement of the Earths gravitational field.

- NGGM will improve the performance of GOCE. A flight formation mission.

- Lisa-pathfinder has used microthrusters to compensate micro-Newton disturbance forces in a drag free control system.
GOCE: EP for Earth observation

GOCE Spacecraft (concept)
Airbreathing Electric Propulsion

ESA is fostering this technology, to enable

a. commercial- and scientific-satellites
b. to operate at very low altitudes, below 250 km,
c. for long time periods.

For this an air-breathing electric propulsion thruster concept is being designed capable to supply drag compensation for a Goce-like satellite at lower altitudes down to 180 km.
• **What is air-breathing electric propulsion:** it uses electrical energy to change the velocity of a satellite, usually with solar electric power. The orbiting spacecraft engine ingests the atmosphere, ionizes a fraction and accelerates the ions to high velocity. The advantage is that it does not require to store the propellant as with conventional electric propulsion.

⇒ It enables substantially increased MISSION LIFE TIME or even the mission itself at such low altitudes, not possible with conventional propulsion either chemical or electrical

• **Where can it be used:** it will enable (new) very low earth orbits and potentially mars orbits. (earth observation, telecommunications, science)
• In 2007, an high level ESA-CDF feasibility study concluded that to compensate the drag of a spacecraft operating at altitudes as lower as 180 km, a ram-EP concept, could be a feasible solution. As such lift-times can become far longer than with conventional electric thrusters today.

• In 2010, under TRP contract, two test campaigns were carried out on Snecma’s PPS1350 Hall Thruster and on RIT-10 ion engine for performance characterization with atmospheric propellants:
 – HET and RIT technologies are compatible with N2/O2 mixture, which is of interest for RAM-EP applications in LEO (200-250 km).
 – The thruster lifetime and lifetime prediction are strongly affected by corrosion/erosion phenomena. However, with the appropriate choice of materials, the lifetime can still be in the 1000-10000 hours range.
Industrial efforts carried out by SITAEL with support of QuinteScience and coordinated by ESA, have been devoted to demonstrate experimentally the feasibility of such a concept in a ground facility.

The breadboard system, to be tested in a vacuum chamber, is composed of:

a) a particle flow generator,

b) a particle collector system,

c) a propulsion thruster (to generate the required thrust) and
d) a measurement system to characterize the flow and to obtain the forces. This paper reports on the status of the activity.
• Concept studies by BUSEK / Nasa Glenn: (K.Hohman, V. Hruby, H. Kamhawi)
• Solar Electric Power Orbiting Spacecraft that ingests Mars Atmosphere, Ionizes a Fraction of that Gas and Accelerates the Ions to High Velocity
• Mars atmosphere is thin and composed mainly CO$_2$
• The altitudes of interest are 120-180km due to drag and power requirements
• The orbital velocity is around 3.4km/s
• Solar Flux is about 584 W/m2 (Earth ~1350 W/m2)
Future Needs

- Future Gravity Missions will require Mini-ion Engines or Field Emission microthrusters to provide drag compensation and formation control.

- LISA class missions will require microthrusters for ultra-fine formation control. Mini-ion engines, cold gas and field emission engines are the main candidates.

- Future asteroid or planetary missions will require Ion Engines or Hall Effect Thrusters for cruise to the target object. MARCO POLO.

- Remote sensing and science missions using formation flying will need electric propulsion for formation control. Field Emission microthrusters and mini ion engines are required.
The primary objective of the LISA mission is to detect and observe gravitational waves.

The success of the mission is based on the performance of a sophisticated accelerometer, which must work under drag-free conditions on each LISA spacecraft.

The drag-free control of the spacecraft will be provided by micro thrusters.

3 clusters of four micro thrusters each are mounted on each LISA spacecraft. The major force to be compensated is the solar radiation pressure force of approximately 50 µN.

LISA Pathfinder is the technology demonstrator of LISA.
The goals for this mission is to detect terrestrial planets in orbit around other stars than our Sun and to allow high spatial resolution imaging.

A constellation of spacecraft will form the interferometer and will rely on electric propulsion to perform orbit and attitude control and reconfiguration of the cluster of satellites.

The propulsion system required will have to provide thrust ranging from several microNewtons for orbit maintenance to several milliNewtons for moving the constellation to observe different bodies. Mini-ion engines and FEEPs are candidates.

This mission is not part of the current ESA Science programme today due to the technical difficulties in propulsion and metrology.
• The Delta V required to reach many Asteroids is very high. Electric Propulsion systems providing high specific impulse are the best candidates to bring spacecraft to the vicinity of a celestial body of this kind.

• Asteroid proximity operations: in order to land it is needed to know the surface characteristics (orbiting phase). The low thrust of the electric propulsion implies that the spacecraft velocity when the spacecraft reaches the Asteroid is low. Breaking manoeuvres are affordable.

• The amount of swing-by manoeuvres is low when EP is used in this kind of missions.
This mission will bring a spacecraft to the Asteroid 1996FG3 which is between 0.7 and 1.4 AU in 8 years from GTO.

The current mission configuration is based on a “cruiser” which will touch down the Asteroid, catch a sample and come back to Earth.

Electric Propulsion will allow to launch the spacecraft in Soyuz

The main propulsion system for the cruise is composed of 2 Qinetiq T6 ion engines. One operating and the other one in cold redundancy.
Where are we today?

- Electric propulsion has taken us to the Moon (SMART-1) and is allowing us to measure the Earth’s gravitational field with unprecedented accuracy (GOCE).
- Electric propulsion is planned to take us to the planet Mercury (BepiColombo) and will allow us to investigate the existence of gravitational waves (LISA).

Required future developments

- Mini-ion engines and Mini-hall thrusters must be developed to satisfy the needs of future gravity missions and other science and remote sensing missions using formation flying.
- Large Ion Engines and Hall Effect Thrusters must be developed to meet the needs of future asteroid or planetary exploration missions. Cargo missions to Mars will also make a good use of these systems.
Geostationary Spacecraft
- Station Keeping
- Orbit Transfer to GEO
- De-orbiting at EOL

LEO/MEO Constellations
- Orbit transfer
- Relative positioning
- De-orbiting at EOL

Modern GEO Bus

Launch Mass [kg]

- Chemical propulsion
- Electric propulsion
• **ESA Artemis** satellite using 4 ion engines (2 RIT and 2 UK-10) has paved the way for the use of electric propulsion in telecommunication spacecraft.

• Astrium with 6 spacecraft launched (4 **Inmarsat**, 1 **Intelsat** and 1 **Yasat** satellites) and 3 more satellites in construction has the most important experience in Europe in integration of Electric Propulsion Systems (SPT-100 for NSSK operations).

• Astrium and Thales have demonstrated their capability to integrate this technology in GEO satellites. The ESA **Alphasat** spacecraft uses PPS1350 for NSSK operations. Alphabus evolution will also consider Electric propulsion for future missions. New spacecraft will use SPT-140 and PPs 5000 for orbit raising and NSSK.

• **Small GEO** satellites will have 4 Hall Effect thrusters, SPT-100, (HEMPTs were developed) for NSSK and EWSK (fixed configuration).

• **NEOSAT and ELECTRA** have been approved at the ministerial conference in 2012 as the new ESA projects in the telecommunication directorate. EP for station keeping and ORBIT RAISING manoeuvres. FULL EP SPACECRAFT
Eutelsat-172

- Eutelsat-172B, built for Eutelsat by Airbus, carries new technologies developed through ESA-led projects, including fully articulated thruster arms. First full EP satellite performing EOR in Europe.

- Final orbit on 17 October 2017. 4 months of electric orbit raising
• **Electric Orbit Raising (EOR) & Electric Orbit Topping (EOT)**
 - Most telecommunication satellites are delivered to a Geostationary Transfer Orbit (GTO) using the selected launch vehicle. From here a number of Orbit raising maneuvers are performed using an onboard high thrust chemical main engine. Usually four separate maneuvers are performed around the orbit apogee to increase the satellites velocity by around 1,500m/s and achieve Geostationary Orbit.
 - These maneuvers typically consume chemical propellant that amounts to ~40% of the satellite mass and are completed a few days after launch.
 - Using electric propulsion, the maneuvers take significantly longer (many months), but can reduce the propellant consumption by thousands of kilograms, increasing the useful dry mass fraction dramatically.
 - Orbit Topping refers to a hybrid solution, whereby chemical thrusters are used to perform the majority of GTO→GEO transfer, and EP is used to complete the maneuver.
 - Whilst EOR and EOT can be used to increase payload mass fraction for a given launch mass or reduce launch mass for a given payload, there are complications to be considered:-
 • Delay before revenue generating services can be established.
 • Overheads of supervision during transfer including ground station coverage.
 • Satellite thermal control during transfer (Payload)
 • Collision risk
 • Radiation environment
 • Power availability on small satellites.
 • Impact of single hardware failures
• The EP application lead achieved by Europe (ARTEMIS/STENTOR) has been all but lost with worldwide competitors offering orbit topping on its large platforms and developing small platforms with ‘all-electric’ orbit raising and station keeping functions.

• All of the existing European platforms use the Fakel (RU) SPT-100 Hall Effect Thruster or the Snecma PPS-1350G Hall Effect Thruster. Since the total impulse capacity of the both of these thrusters is limited, existing configurations can not offer significant orbit topping in addition to the baseline station keeping functions. PPS5000, SPT-140, Aerojet-ESP thruster will allow orbit raising manoeuvres (5kW, dual mode, magnetic shielding).

• The European reaction to the changing launcher market and commercial platform developments in the United States is now underway. Both NeoSat (ARTES-14) and Electra (ARTES-33) are intended to cover the small to medium class platform applications. Significant topping of between 4-8 months, or complete electric orbit raising configurations are expected from these developments.

• Eutelsat-172B, built for Eutelsat by Airbus, carries new technologies developed through ESA-led projects, including fully articulated thruster arms. First full EP satellite performing EOR in Europe utilising SPT-140 from Fackel.

• It is clear that the trend to increased use of electric propulsion will continue in the telecommunications market and that higher power thrusters will be needed to meet both the orbit raising and station keeping needs of future small and large platforms.

The aim of ESA is to ensure the technology building blocks are made available in a suitable timeframe to support this evolution in commercial satellites
Electric Propulsion for Telecommunications

- The use of Electric Propulsion in the telecommunication space market is essential to improve the position of the European space sector. The announcement of Boeing in 2012 on the procurement of 4 telecommunication spacecraft (platform 702SP) for Satellites Mexicanos (Satmex) and Asian Broadband Satellites (ABS), offered for only 125 million dollars each including launch, thanks to the use of electric propulsion for both NSSK and orbit raising from GTO to GEO, has been noted by European operators and primes.

- ESA is now fully involved in the preparation of several telecommunication programmes (Neosat, Electra, Hercules) that will make use of electric propulsion for all the key manoeuvres, paving the way for the commercial use of all-electric platforms by the primes Astrium, Thales and OHB Systems.

- Boeing has selected the Falcon 9 launcher for the launch of these spacecraft. Current and future European launchers will need to be capable to optimise their performances, interfaces and operations to offer the best launch options to new all-electric platforms.

- In the short term, the adoption of electric propulsion might offer new opportunities for the heavy lift Ariane 5, that typically offers to launch two spacecraft, one large and one medium. Adding the option of a low mass 702 SP class comsat, Arianespace could accommodate larger primary payloads co-manifested with a single all-electric spacecraft, without exceeding the rocket's total capacity.

- Airbus Defense and Space, LORAL, Lookeed are building spacecraft using EP for orbit raising and station keeping manoeuvres.

- Several primes at world level are selling spacecraft with electric propulsion for station keeping and orbit raising and it is expected that this kind of satellites will get the 50% of the telecommunication market.

- In the longer term, Ariane 6 will have to be compatible with a new generation of full electric spacecraft.
existing European platforms use the Fakel (RU) SPT-100 Hall Effect Thruster or the Snecma PPS-1350G Hall Effect Thruster.

They can not offer significant orbit topping in addition to the baseline station keeping functions.

NeoSat (ARTES-14) and Electra (ARTES-33), the small to medium class platform. Topping of between 4-8 months, or complete electric orbit raising configurations are expected from these developments.

The trend to increased use of electric propulsion will continue.

The higher power thrusters are and will be meeting both the orbit raising and station keeping needs of future small and large platforms. PPS 5000, SPT-140 and Aerojet 5kw thrusters are the main competitors today.
• Space X: ~5000 spacecraft using mini-HET
• OneWeb: > 675 spacecraft may also use electric propulsion
• Others (Leosat, etc.)

Constellations will use propulsion to perform:
• orbit acquisition, maintenance and de-orbiting from low earth orbit (around 600 km)

Satellites
• ~ 300 kg with
• powers for propulsion ~ 200 W.
• Mini-HET is one of the most interesting options. HEMPT and mini-ion engines are also being considered.
• Spacecraft cost around 500 000 $
• the propulsion system (thruster ~25 000 $ and electronics ~25 000 $)
Telecommunication Applications
Existing Platforms in Europe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ARTEMIS</td>
<td>Thales Alenia Space - Italy</td>
<td>Flight Proven</td>
<td>3.0</td>
<td>3.0</td>
<td>NSSK</td>
<td>2 X UK-10 (T5)</td>
<td>GIE</td>
</tr>
<tr>
<td>Eurostar E3000</td>
<td>Airbus</td>
<td>Flight Proven</td>
<td>4.5 – 6.0</td>
<td>9 - 16</td>
<td>NSSK-EOR</td>
<td>4 X SPT-100</td>
<td>HET</td>
</tr>
<tr>
<td>SpaceBus</td>
<td>Thales Alenia Space</td>
<td>Flight Ready</td>
<td></td>
<td></td>
<td>NWSK</td>
<td>4 X PPS-1350G</td>
<td>HET</td>
</tr>
<tr>
<td>AlphaBus</td>
<td>Astrium / Thales</td>
<td>Flight Proven</td>
<td>6.0 – 6.5</td>
<td>12 - 18</td>
<td>NWSK</td>
<td>4 X PPS-1350G</td>
<td>HET</td>
</tr>
<tr>
<td>AlphaBus Extension</td>
<td>Astrium / Thales</td>
<td>Flight Proven</td>
<td><8.4</td>
<td>12-22</td>
<td>NWSK, Orbit Topping</td>
<td>4 X PPS-1350G</td>
<td>HET/GIE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4 X PPS-1350G OPTION T-6</td>
<td></td>
</tr>
<tr>
<td>SCEO</td>
<td>OHB</td>
<td>PFM 2014</td>
<td>3.2</td>
<td>6.5</td>
<td>NWSK, EWSK, Momentum Management</td>
<td>8 X SPT-100 Or 8 X HEMPT</td>
<td>HET/HEMPT</td>
</tr>
<tr>
<td>NEOSAT</td>
<td>Airbus/Thales</td>
<td>Under development</td>
<td>3-6</td>
<td>15-25</td>
<td>NWSK, Orbit Raising</td>
<td>4XPPS5000</td>
<td>HET</td>
</tr>
<tr>
<td>ELECTRA</td>
<td>OHB</td>
<td>Under Development</td>
<td>3.2</td>
<td>7</td>
<td>NWSK, Orbit Raising</td>
<td>4XPPS5000</td>
<td>HET</td>
</tr>
</tbody>
</table>
• Between the two technologies, a full range of

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Hall Effect Thruster</th>
<th>Gridded Ion Thruster</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specific Power</td>
<td>18W/mN</td>
<td>25-35W/mN</td>
<td>Lower number represents improved Orbit Transfer durations for a given power ceiling</td>
</tr>
<tr>
<td>Thruster Efficiency</td>
<td>50%</td>
<td>70%</td>
<td>Higher number tends to reduce thermal interface demands for a given power ceiling</td>
</tr>
<tr>
<td>Specific Impulse</td>
<td>1500-2500s</td>
<td>2500-4500s</td>
<td>Higher number represents wet mass saving / higher payload fraction</td>
</tr>
<tr>
<td>Operating Voltage</td>
<td>300-400V</td>
<td>1000-2000V</td>
<td></td>
</tr>
<tr>
<td>PPU Specific Mass</td>
<td>5kg/kW</td>
<td>10kg/kW</td>
<td>Higher number represents increased EP system dry mass penalty</td>
</tr>
<tr>
<td>Plume Divergence</td>
<td>45°</td>
<td>15°</td>
<td>Lower number reduces complications of thruster beam interaction with spacecraft appendages (Solar arrays, antennas)</td>
</tr>
<tr>
<td>Throttle Range</td>
<td>2:1</td>
<td>10:1</td>
<td>20:1 demonstrated on GOCE (QinetiQ T5)</td>
</tr>
</tbody>
</table>
Where are we today?

- Electric propulsion is providing operational NSSK on several Eurostar 3000 spacecraft and many Boeing and LORAL spacecraft.
- Electric propulsion has been selected for the Alphasat and Small GEO missions, performing station keeping operations.

Required future developments

- Cost reductions must be achieved across the complete propulsion sub-system to improve competitiveness.
- Full qualification of European feed system components (regulators, latch valves and flow control valves) to remove ITAR dependencies.
- Life extension of existing thruster systems (SPT-100, PPS1350) to satisfy medium-term high power platform needs.
- Qualification of high power thruster variants (T6, PPS 5000, SPT-140) to satisfy the needs of future very high power platforms. Orbit Topping and Orbit raising will be the new challenge.
- New ESA projects (NEOSAT and ELECTRA) will make use of EP for orbit raising and station keeping. FULL EP SPACECRAFT
ESA has initiated a reflection period on Exploration.

- A Working group has been set up and several technology missions have been studied.
- Exploration roadmaps have been published in 2012 and reviewed in 2015 and in the near future.
- The main idea is to have technology missions that prepare the way to Exploration, taking into account the different needs of these missions on propulsion.
- R2D3 and Complex are technology missions with Electric Propulsion (>10kW engines)
- The roadmaps for the technology needed for Exploration have been harmonised with industry in 2015.
- In 2017, NASA and ESA are looking for an exploration project together, CISLUNAR, the next frontier (20 kW Hall Effect thruster)
• ESA and the ISS Partners are discussing plans for beyond LEO activities, considering a small man-tended infrastructure in Cislunar orbit, known as evolvable Deep Space Habitat or Cislunar Transfer Habitat (CTH).

• This is the first enabling step to a sustainable access to the Moon surface and will be assembled and serviced using excess launch mass capability of NASA’s SLS/Orion.

• During Phase 1 (2023-2026) such an infrastructure shall support up to 90 days of crewed operations and robotics surface missions.

• During Phase 2 (2026-2030) it shall support up to 300 days of crewed operations and Moon robotics and crewed surface missions. Then part of the CTH may go to a crewed trip to Mars.

• Phase 2 will see the arrival of a larger habitation module and resource/propulsion service module.
Phase 1

- **Elements**
 - Cislunar Bus & Extension Truss with Science Airlock and Robotic Arm
 - Short Duration Habitation: Interchangeable Launch Order: Small Hab and Node
 - Crew Transportation via Orion or Russian CTV

Phase 2

- **Elements - Notional**
 - Support for reusable Robotic Lunar Landers, Lunar or Mars Sample Return
 - Reusable Human Lunar Landers
 - Mars Class Transit Habitat and In Space Propulsion

- **Support for reusable Robotic Lunar Landers, Lunar or Mars Sample Return**
 - Co-manifested or Commercial Logistics

- **Launch Order:**
 - Small Hab and Node
For the Cislunar service module NASA is considering a large reuse of the Asteroid Retrieval Mission (ARM) bus (core module).

As a potential ESA contribution to the Cislunar service module ESA is considering to provide:

- The specialised module with coms, main bus avionics, scientific airlock, RVD sensors, docking, etc,
- A 15-20 kW HET string (thruster, thrust vector control, power processing unit) in addition to the NASA 12.5 kW HET units (4).

The business case for a SEP thruster (class 40-60 kW) is not demonstrated yet, but would use the same thruster.

High power SEP is becoming more and more interesting for various applications:

- Large satellite transfer to GEO
- Interplanetary missions
- Cislunar Phase 2 and Mars transfer
- Spacecraft servicing
QINETIQ T6 case with escape from HEO

- Launch: Jun. 2015 into HEO (300x375000km)
- Mass at launch: 2300 (w/o adaptor)
- Escape by SEP: Sep. 2015
- Power @1AU: 12.7kW
- Mass into escape: 2235 kg
- Departure Velocity: 0.6 km/s
- Arrival SOI: 15 May 2017
- Arrival velocity: 350 m/s
- Arrival Mass SOI: 2017 kg
- Transfer time: 630 days
- DV: 4.5 km/s (w/o margin)

Main requirement: at EOL power on the thruster to achieve a 150 mN thrust.

-Solar Array surface of 45m².
-Payload mass of 625 kg (CP 350 kg), similar mission time (2 years)
• Land a crew of humans on Mars by 2030 and return them safely, ensuring planetary protection for both, Earth and Mars,

• *Demonstrate human capabilities needed to support human presence on Mars,*

• Perform exploration and expand scientific knowledge taking maximum advantage of human presence including sample selection,

• *Assess suitability of planet for long term presence*

• Use of Electric Propulsion Systems for cargo
• Existence of life forms on Mars
• Radiation Environment
• Effects of Radiation on Humans
• Medical and Physiological Aspects
• Psychological Reactions
• Martian Soil Properties
• Martian Atmosphere Properties
Required Capabilities

- Assembly in Orbit
- Advanced Interplanetary Propulsion
- Light-weight Habitats
- Life Support Systems
- Aerocapture/Aerobraking
- Descent and Landing
- Space Infrastructure (Telecom, Navigation)
<table>
<thead>
<tr>
<th>Solar Electric Propulsion for Inner Solar System</th>
<th>Radioisotope Electric for Outer Solar System Missions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Planets</td>
<td>– Targets with low Mass</td>
</tr>
<tr>
<td></td>
<td>– 500 W Class RTG</td>
</tr>
<tr>
<td></td>
<td>– <50 kg payload</td>
</tr>
<tr>
<td></td>
<td>– Delta II Launchers</td>
</tr>
<tr>
<td>Main Asteroid Belt</td>
<td></td>
</tr>
<tr>
<td>Trojan Asteroids</td>
<td></td>
</tr>
<tr>
<td>Centaur Minor Planets</td>
<td></td>
</tr>
<tr>
<td>Trans-Neptunian Objects</td>
<td></td>
</tr>
<tr>
<td>Kuiper Belt Objects / Comets</td>
<td></td>
</tr>
<tr>
<td>Jupiter and Moons</td>
<td></td>
</tr>
<tr>
<td>Saturn and Moons</td>
<td></td>
</tr>
<tr>
<td>Uranus and Moons</td>
<td></td>
</tr>
<tr>
<td>Neptune and Moons</td>
<td></td>
</tr>
<tr>
<td>Pluto/Charon</td>
<td></td>
</tr>
<tr>
<td>Nuclear Electric for Large Flagship Missions to Outer Planets</td>
<td></td>
</tr>
<tr>
<td>– Large Targets</td>
<td></td>
</tr>
<tr>
<td>– 100 kW Class Reactor</td>
<td></td>
</tr>
<tr>
<td>– >500 kg Payloads</td>
<td></td>
</tr>
<tr>
<td>– Delta IV Launch Vehicles</td>
<td></td>
</tr>
<tr>
<td>RTG for Surface Lander</td>
<td></td>
</tr>
</tbody>
</table>
• ESA is preparing the future replacement of GALILEO constellation and is targeting the possibility to increase the Galileo Payload capability without impacting the launch costs (and possibly reducing them).

• The increase in payload capability could be achieved by changing the launch injection strategy and by using Electric Propulsion to transfer the satellite from the injection orbit to the target operational orbit.

• The use of the Electric Propulsion system might allow to use small launchers such as VEGA or place more spacecraft in the current SOYUZ and Ariane 5 launchers.

• GIE and HET subsystems are currently considered for the transfer by the selected Primes of Phase A/B1.
• ESA is preparing the future replacement of GALILEO. The use of the Electric Propulsion system will allow to use small launchers such as VEGA or place more spacecraft in the current SOYUZ and Ariane 5 launchers.

• T6 ion engine operating at 4000 seconds of specific impulse and at 150 mN requiring a power of 5kW is considered for the orbit raising operations. (1+1 Redundant)

• Hall Effect thruster technology (PPS1350) could reduce the time of operation but at expenses of using more propellant. (3+1 redundant).

• New 5kW thrusters such as PPS 5000 could also do the job.

• The only way to use the VEGA launcher is by using a T6 ion engine as main engine of the orbit raising manoeuvre.
Thrusters

- Higher and lower power versions of current engines (HETs, Ion Engines)
- HEMPT engine
- MEMS, Helicon Antenna Thrusters, In-Porous milliNewton thrusters, Micro-PPTs, etc.
- Mini-ion engines, mini-Hall Effect thrusters.
- Field Emission thrusters

Components (emphasis on cost reduction)

- Xenon storage, regulation and flow control systems
- Cathodes and neutraliser

Electric Propulsion in-flight Diagnostic Packages

Verification Tools and techniques

- Advanced plume characterisation tools and models
- Electric Propulsion EMI validation facilities
- EP system design and performance verification models

EP Implementation Support

- Assessment of Flight data from missions in-orbit
- Optimisation of systems configurations
ESA Propulsion Lab

- The laboratory focuses on space propulsion.
- EPL provides test services to the Propulsion and Aerothermodynamics division, which is responsible for R&D activities and support to projects in the areas of chemical propulsion, electric and advanced propulsion, and aerothermodynamics.
Electric propulsion has been identified by European actors as a Strategic Technology for improving the European competitiveness in different space areas.

The European Commission (EC) has set up the “In-space Electrical Propulsion and Station-Keeping” Strategic Research Cluster (SRC) in Horizon 2020 with the goal of enabling major advances in Electric Propulsion for in-space operations and transportation, in order to contribute to guarantee the leadership of European capabilities in electric propulsion at world level within the 2020-2030 timeframe.

The SRCs will be implemented through a system of grants connected among them and consisting of:

1) “Programme Support Activity” (PSA): The main role of this PSA is to elaborate a roadmap and implementation plan for the whole SRC and provide advice to the EC on the calls for operational grants.

2) Operational grants: In future work programmes (2016 and 2020), and on the basis of this SRC roadmap and the PSA advice for the calls, the Commission is expected to publish calls for “operational grants” as research and innovation grants (100%) and/or innovation grants (70%).
The European Commission (EC) has funded, as part of the Horizon 2020 Space Work Programme 2014, a Programme Support Activity (PSA) for the implementation of the **Strategic Research Clusters (SRC) on “In-Space electrical propulsion and station keeping”**.

The “**Electric Propulsion Innovation & Competitiveness**” (EPIC) project is the PSA for the Electric Propulsion SRC funded as response to the H2020 Space COMPET-3-2014 topic.

It has been initiated in October 2014 and has a duration of **5 years**, during which it is meant to support the European Commission on the definition and successful implementation of the SRC in Horizon 2020, in order to achieve the objectives set for it and subsequently for Europe on this increasingly relevant technology area at worldwide level.

The EPIC PSA aims at providing advice to the EC preparing Roadmaps, drafting call texts and assessing results of the SRC operational grants.

The R&D work will come in the SRC as a part of future Calls made by the EC, open to all EU Member States and H2020 participants, and will be selected and supported through the normal Horizon 2020 grant procedures

EPIC PSA Partners: EPIC – ESA (coordinator), ASI, BELSPO, CDTI, CNES, DLR, UKSA, Eurospace, S4S
Conclusions

1. High power EP short term applications: telecommunication (orbit maintenance of 7-16 kW platforms) and science (interplanetary missions such as Bepi Colombo) will be able to make an immediate use of these technologies. High power EP long term applications: high power telecommunication spacecraft (orbit-raising and orbit maintenance of 20 kW platforms), science (interplanetary missions) and exploration (the Moon, Asteroids and Mars) will require such systems.

2. Small platforms such as Small GEO and Electra are going to play an important role thanks to the use of launchers such as Falcon 9 that will allow to launch high power payloads in small platforms thanks to the use of electric propulsion for orbit transfer.

3. In order to improve European competitiveness some strategies could be envisaged in this domain: re-usability of systems such as T6 baselined in BepiColombo or PPS-5000 or RIT 22 in new missions and new developments such as high power HEMPT to enable new missions. Boeing will use PPS5000 and RIT22 European engines in their platforms.

4. Europe can and shall benefit from the current advanced status of these technologies to enable non-dependence in this field and even to propose the provision of electric propulsion systems as part of possible collaboration on future international collaborative programmes in Science and Exploration.

5. ESA is also developing microthrusters such as mini-ion engines, FEEP, mini-Halls, etc. with capability to fulfill stringent Science and Earth Observation requirements (LISA, NGGM, Euclide, etc.). Airbus, Sitael, FOTEC-EMPULSION, etc. are busy with these developments.

6. The next Galileo programme is planning the use of electric propulsion to perform orbit raising from LEO or GTO to High Elliptical

7. Interplanetary missions may require Nuclear Electric propulsion Systems when the DeltaV is high and the Sun is far.

8. The Moon and Mars will be the next targets of the Exploration activities and Electric Propulsion will play an important role in Cargo missions to these planets. 20kW engines will be required for CISLUNAR missions.

9. European Commission EPIC initiative with ESA, National Space agencies, Industry and University is an important tool for achieving these goals.